TOPICS
Search

Search Results for ""


2191 - 2200 of 3946 for complex functionSearch Results
The Euclidean metric is the function d:R^n×R^n->R that assigns to any two vectors in Euclidean n-space x=(x_1,...,x_n) and y=(y_1,...,y_n) the number ...
Due to Euler's prolific output, there are a great number of theorems that are know by the name "Euler's theorem." A sampling of these are Euler's displacement theorem for ...
Consider a function f(x) in one dimension. If f(x) has a relative extremum at x_0, then either f^'(x_0)=0 or f is not differentiable at x_0. Either the first or second ...
If P(x,y) and P(x^',y^') are two points on an ellipse (x^2)/(a^2)+(y^2)/(b^2)=1, (1) with eccentric angles phi and phi^' such that tanphitanphi^'=b/a (2) and A=P(a,0) and ...
The term faltung is variously used to mean convolution and a function of bilinear forms. Let A and B be bilinear forms A = A(x,y)=sumsuma_(ij)x_iy_i (1) B = ...
A continuous real function L(x,y) defined on the tangent bundle T(M) of an n-dimensional smooth manifold M is said to be a Finsler metric if 1. L(x,y) is differentiable at ...
If f(x) is an odd function, then a_n=0 and the Fourier series collapses to f(x)=sum_(n=1)^inftyb_nsin(nx), (1) where b_n = 1/piint_(-pi)^pif(x)sin(nx)dx (2) = ...
The Gallatly circle is the circle with center at the Brocard midpoint X_(39) and radius R_G = Rsinomega (1) = (abc)/(2sqrt(a^2b^2+a^2c^2+b^2c^2)), (2) where R is the ...
_2F_1(-1/2,-1/2;1;h^2) = sum_(n=0)^(infty)(1/2; n)^2h^(2n) (1) = 1+1/4h^2+1/(64)h^4+1/(256)h^6+... (2) (OEIS A056981 and A056982), where _2F_1(a,b;c;x) is a hypergeometric ...
The identity PVint_(-infty)^inftyF(phi(x))dx=PVint_(-infty)^inftyF(x)dx (1) holds for any integrable function F(x) and phi(x) of the form ...
1 ... 217|218|219|220|221|222|223 ... 395 Previous Next

...