Search Results for ""
401 - 410 of 3197 for chess mathSearch Results

d sum OEIS 0 23.10344 A082839 1 16.17696 A082830 2 19.25735 A082831 3 20.56987 A082832 4 21.32746 A082833 5 21.83460 A082834 6 22.20559 A082835 7 22.49347 A082836 8 22.72636 ...
Kloosterman's sum is defined by S(u,v,n)=sum_(h)exp[(2pii(uh+vh^_))/n], (1) where h runs through a complete set of residues relatively prime to n and h^_ is defined by hh^_=1 ...
Let (a)_i and (b)_i be sequences of complex numbers such that b_j!=b_k for j!=k, and let the lower triangular matrices F=(f)_(nk) and G=(g)_(nk) be defined as ...
Arrange copies of the n digits 1, ..., n such that there is one digit between the 1s, two digits between the 2s, etc. For example, the unique (modulo reversal) n=3 solution ...
A lucky number of Euler is a number p such that the prime-generating polynomial n^2-n+p is prime for n=1, 2, ..., p-1. Such numbers are related to the imaginary quadratic ...
Let E be a compact connected subset of d-dimensional Euclidean space. Gross (1964) and Stadje (1981) proved that there is a unique real number a(E) such that for all x_1, ...
Mathematics is a broad-ranging field of study in which the properties and interactions of idealized objects are examined. Whereas mathematics began merely as a calculational ...
The metric dimension beta(G) (Tillquist et al. 2021) or dim(G) (Tomescu and Javid 2007, Ali et al. 2016) of a graph G is the smallest number of nodes required to identify all ...
There are two versions of the moat-crossing problem, one geometric and one algebraic. The geometric moat problems asks for the widest moat Rapunzel can cross to escape if she ...
Newton's method for finding roots of a complex polynomial f entails iterating the function z-[f(z)/f^'(z)], which can be viewed as applying the Euler backward method with ...

...