Search Results for ""
2401 - 2410 of 13135 for calculusSearch Results
There are a number of formulas variously known as Hurwitz's formula. The first is zeta(1-s,a)=(Gamma(s))/((2pi)^s)[e^(-piis/2)F(a,s)+e^(piis/2)F(-a,s)], where zeta(z,a) is a ...
The hyperbolic cotangent is defined as cothz=(e^z+e^(-z))/(e^z-e^(-z))=(e^(2z)+1)/(e^(2z)-1). (1) The notation cthz is sometimes also used (Gradshteyn and Ryzhik 2000, p. ...
The hyperbolic secant is defined as sechz = 1/(coshz) (1) = 2/(e^z+e^(-z)), (2) where coshz is the hyperbolic cosine. It is implemented in the Wolfram Language as Sech[z]. On ...
A mathematical statement that one quantity is greater than or less than another. "a is less than b" is denoted a<b, and "a is greater than b" is denoted a>b. "a is less than ...
A general integral transform is defined by g(alpha)=int_a^bf(t)K(alpha,t)dt, where K(alpha,t) is called the integral kernel of the transform.
Given a function f(x), its inverse f^(-1)(x) is defined by f(f^(-1)(x))=f^(-1)(f(x))=x. (1) Therefore, f(x) and f^(-1)(x) are reflections about the line y=x. In the Wolfram ...
Solving the nome q for the parameter m gives m(q) = (theta_2^4(q))/(theta_3^4(q)) (1) = (16eta^8(1/2tau)eta^(16)(2tau))/(eta^(24)(tau)), (2) where theta_i(q)=theta_i(0,q) is ...
The inverse tangent integral Ti_2(x) is defined in terms of the dilogarithm Li_2(x) by Li_2(ix)=1/4Li_2(-x^2)+iTi_2(x) (1) (Lewin 1958, p. 33). It has the series ...
An isolated singularity is a singularity for which there exists a (small) real number epsilon such that there are no other singularities within a neighborhood of radius ...
Roughly speaking, isospectral manifolds are drums that sound the same, i.e., have the same eigenfrequency spectrum. Two drums with differing area, perimeter, or genus can ...
...
View search results from all Wolfram sites (19164 matches)

