TOPICS
Search

Search Results for ""


271 - 280 of 1590 for calculational equationSearch Results
An inhomogeneous linear ordinary differential equation with constant coefficients is an ordinary differential equation in which coefficients are constants (i.e., not ...
In elliptic cylindrical coordinates, the scale factors are h_u=h_v=sqrt(sinh^2u+sin^2v), h_z=1, and the separation functions are f_1(u)=f_2(v)=f_3(z)=1, giving a Stäckel ...
A homogeneous linear ordinary differential equation with constant coefficients is an ordinary differential equation in which coefficients are constants (i.e., not functions), ...
To solve the system of differential equations (dx)/(dt)=Ax(t)+p(t), (1) where A is a matrix and x and p are vectors, first consider the homogeneous case with p=0. The ...
If one solution (y_1) to a second-order ordinary differential equation y^('')+P(x)y^'+Q(x)y=0 (1) is known, the other (y_2) may be found using the so-called reduction of ...
In cylindrical coordinates, the scale factors are h_r=1, h_theta=r, h_z=1, so the Laplacian is given by del ...
The partial differential equation u_t+u_(xxxxx)+30uu_(xxx)+30u_xu_(xx)+180u^2u_x=0.
In parabolic cylindrical coordinates, the scale factors are h_u=h_v=sqrt(u^2+v^2), h_z=1 and the separation functions are f_1(u)=f_2(v)=f_3(z)=1, giving Stäckel determinant ...
As shown by Morse and Feshbach (1953), the Helmholtz differential equation is separable in confocal paraboloidal coordinates.
As shown by Morse and Feshbach (1953) and Arfken (1970), the Helmholtz differential equation is separable in oblate spheroidal coordinates.
1 ... 25|26|27|28|29|30|31 ... 159 Previous Next

...