Search Results for ""
6611 - 6620 of 13134 for binomial theorySearch Results
Given a contravariant basis {e^->_1,...,e^->_n}, its dual covariant basis is given by e^->^alpha·e^->_beta=g(e^->^alpha,e^->_beta)=delta_beta^alpha, where g is the metric and ...
Given a vector bundle pi:E->M, its dual bundle is a vector bundle pi^*:E^*->M. The fiber bundle of E^* over a point p in M is the dual vector space to the fiber of E.
If X is a normed linear space, then the set of continuous linear functionals on X is called the dual (or conjugate) space of X. When equipped with the norm ...
Let A, B, and C be three polar vectors, and define V_(ijk) = |A_i B_i C_i; A_j B_j C_j; A_k B_k C_k| (1) = det[A B C], (2) where det is the determinant. The V_(ijk) is a ...
Given an antisymmetric second tensor rank tensor C_(ij), a dual pseudotensor C_i is defined by C_i=1/2epsilon_(ijk)C_(jk), (1) where C_i = [C_(23); C_(31); C_(12)] (2) C_(jk) ...
Dual pairs of linear programs are in "strong duality" if both are possible. The theorem was first conceived by John von Neumann. The first written proof was an Air Force ...
The dumbbell curve is the sextic curve a^4y^2=x^4(a^2-x^2). (1) It has area A=1/4pia^2 (2) and approximate arc length s approx 5.541a. (3) For the parametrization x = at (4) ...
A pair of conics obtained by expanding an equation in Monge's form z=F(x,y) in a Maclaurin series z = z(0,0)+z_1x+z_2y+1/2(z_(11)x^2+2z_(12)xy+z_(22)y^2)+... (1) = ...
In three mutually orthogonal systems of surfaces, the lines of curvature on any surface in one of the systems are its intersections with the surfaces of the other two systems.
Let the values of a function f(x) be tabulated at points x_i equally spaced by h=x_(i+1)-x_i, so f_1=f(x_1), f_2=f(x_2), ..., f_n=f(x_n). Then Durand's rule approximating the ...
...
View search results from all Wolfram sites (34966 matches)

