Search Results for ""
10131 - 10140 of 13134 for binomial theorySearch Results
For a positive integer n, (2pi)^((n-1)/2)n^(1/2-nz)Gamma(nz)=product_(k=0)^(n-1)Gamma(z+k/n),
Let a spherical triangle have sides a, b, and c with A, B, and C the corresponding opposite angles. Then (sin[1/2(a-b)])/(sin(1/2c)) = (sin[1/2(A-B)])/(cos(1/2C)) (1) ...
_2F_1(a,b;c;1)=((c-b)_(-a))/((c)_(-a))=(Gamma(c)Gamma(c-a-b))/(Gamma(c-a)Gamma(c-b)) for R[c-a-b]>0, where _2F_1(a,b;c;x) is a (Gauss) hypergeometric function. If a is a ...
If u_n>0 and given B(n) a bounded function of n as n->infty, express the ratio of successive terms as |(u_n)/(u_(n+1))|=1+h/n+(B(n))/(n^r) for r>1. The series converges for ...
Gauss's theorema egregium states that the Gaussian curvature of a surface embedded in three-space may be understood intrinsically to that surface. "Residents" of the surface ...
The second-order ordinary differential equation (1-x^2)y^('')-2(mu+1)xy^'+(nu-mu)(nu+mu+1)y=0 (1) sometimes called the hyperspherical differential equation (Iyanaga and ...
The Gelfand transform x|->x^^ is defined as follows. If phi:B->C is linear and multiplicative in the senses phi(ax+by)=aphi(x)+bphi(y) and phi(xy)=phi(x)phi(y), where B is a ...
A generalization of the confluent hypergeometric differential equation given by (1) The solutions are given by y_1 = x^(-A)e^(-f(x))_1F_1(a;b;h(x)) (2) y_2 = ...
A solid such that the area A_y of any section parallel to and a distance y from a fixed plane can be expressed as A_y=ay^3+by^2+cy+d. The volume of such a solid is the same ...
A ruled surface is called a generalized cylinder if it can be parameterized by x(u,v)=vp+y(u), where p is a fixed point. A generalized cylinder is a regular surface wherever ...
...
View search results from all Wolfram sites (34966 matches)

