Search Results for ""
1151 - 1160 of 2487 for autonomous convergence theoremSearch Results

The 6.1.2 equation A^6=B^6+C^6 (1) is a special case of Fermat's last theorem with n=6, and so has no solution. No 6.1.n solutions are known for n<=6 (Lander et al. 1967; Guy ...
There are (at least) three types of Euler transforms (or transformations). The first is a set of transformations of hypergeometric functions, called Euler's hypergeometric ...
The reciprocal of the arithmetic-geometric mean of 1 and sqrt(2), G = 2/piint_0^11/(sqrt(1-x^4))dx (1) = 2/piint_0^(pi/2)(dtheta)/(sqrt(1+sin^2theta)) (2) = L/pi (3) = ...
A power series in a variable z is an infinite sum of the form sum_(i=0)^inftya_iz^i, where a_i are integers, real numbers, complex numbers, or any other quantities of a given ...
Suppose the harmonic series converges to h: sum_(k=1)^infty1/k=h. Then rearranging the terms in the sum gives h-1=h, which is a contradiction.
If, in an interval of x, sum_(r=1)^(n)a_r(x) is uniformly bounded with respect to n and x, and {v_r} is a sequence of positive non-increasing quantities tending to zero, then ...
The series sumf(n) for a monotonic nonincreasing f(x) is convergent if lim_(x->infty)^_(e^xf(e^x))/(f(x))<1 and divergent if lim_(x->infty)__(e^xf(e^x))/(f(x))>1.
Let sum_(k=0)^(infty)a_k=a and sum_(k=0)^(infty)c_k=c be convergent series such that lim_(k->infty)(a_k)/(c_k)=lambda!=0. Then ...
The series sum_(j=1)^(infty)f_j(z) is said to be uniformly Cauchy on compact sets if, for each compact K subset= U and each epsilon>0, there exists an N>0 such that for all ...
A sequence is said to be convergent if it approaches some limit (D'Angelo and West 2000, p. 259). Formally, a sequence S_n converges to the limit S lim_(n->infty)S_n=S if, ...

...