Search Results for ""
921 - 930 of 1777 for Well DefinedSearch Results
![](/common/images/search/spacer.gif)
Let S be a mathematical statement, then the Iverson bracket is defined by [S]={0 if S is false; 1 if S is true, (1) and corresponds to the so-called characteristic function. ...
Jenny's constant is the name given (Munroe 2012) to the positive real constant defined by J = (7^(e-1/e)-9)pi^2 (1) = 867.53090198... (2) (OEIS A182369), the first few digits ...
The jinc function is defined as jinc(x)=(J_1(x))/x, (1) where J_1(x) is a Bessel function of the first kind, and satisfies lim_(x->0)jinc(x)=1/2. The derivative of the jinc ...
For positive integer n, the K-function is defined by K(n) = 1^12^23^3...(n-1)^(n-1) (1) = H(n-1), (2) where the numbers H(n)=K(n+1) are called hyperfactorials by Sloane and ...
Kakutani's fixed point theorem is a result in functional analysis which establishes the existence of a common fixed point among a collection of maps defined on certain ...
A semi-oriented 2-variable knot polynomial defined by F_L(a,z)=a^(-w(L))<|L|>, (1) where L is an oriented link diagram, w(L) is the writhe of L, |L| is the unoriented diagram ...
The Kauffman X-polynomial, also called the normalized bracket polynomial, is a 1-variable knot polynomial denoted X (Adams 1994, p. 153), L (Kauffman 1991, p. 33), or F ...
The kei_nu(z) function is defined as the imaginary part of e^(-nupii/2)K_nu(ze^(pii/4))=ker_nu(z)+ikei_nu(z), (1) where K_nu(z) is a modified Bessel function of the second ...
Kelvin defined the Kelvin functions bei and ber according to ber_nu(x)+ibei_nu(x) = J_nu(xe^(3pii/4)) (1) = e^(nupii)J_nu(xe^(-pii/4)), (2) = e^(nupii/2)I_nu(xe^(pii/4)) (3) ...
The symbol ker has at least two different meanings in mathematics. It can refer to a special function related to Bessel functions, or (written either with a capital or ...
![](/common/images/search/spacer.gif)
...