Search Results for ""
171 - 180 of 662 for VectorsSearch Results
A vector derivative is a derivative taken with respect to a vector field. Vector derivatives are extremely important in physics, where they arise throughout fluid mechanics, ...
A solenoidal vector field satisfies del ·B=0 (1) for every vector B, where del ·B is the divergence. If this condition is satisfied, there exists a vector A, known as the ...
Let V be a vector space over a field K, and let A be a nonempty set. Now define addition p+a in A for any vector a in V and element p in A subject to the conditions: 1. ...
Characteristic classes are cohomology classes in the base space of a vector bundle, defined through obstruction theory, which are (perhaps partial) obstructions to the ...
A gadget defined for complex vector bundles. The Chern classes of a complex manifold are the Chern classes of its tangent bundle. The ith Chern class is an obstruction to the ...
The point on the positive ray of the normal vector at a distance rho(s), where rho is the radius of curvature. It is given by z = x+rhoN (1) = x+rho^2(dT)/(ds), (2) where N ...
A basis for the real numbers R, considered as a vector space over the rationals Q, i.e., a set of real numbers {U_alpha} such that every real number beta has a unique ...
A complex vector bundle is a vector bundle pi:E->M whose fiber bundles pi^(-1)(m) are a copy of C^k. pi is a holomorphic vector bundle if it is a holomorphic map between ...
Let H be a Hilbert space and M a closed subspace of H. Corresponding to any vector x in H, there is a unique vector m_0 in M such that |x-m_0|<=|x-m| for all m in M. ...
For a curve with radius vector r(t), the unit tangent vector T^^(t) is defined by T^^(t) = (r^.)/(|r^.|) (1) = (r^.)/(s^.) (2) = (dr)/(ds), (3) where t is a parameterization ...
...
View search results from all Wolfram sites (5789 matches)

