Search Results for ""
10481 - 10490 of 13135 for Use of graphing calculatorsSearch Results
When p is a prime number, then a p-group is a group, all of whose elements have order some power of p. For a finite group, the equivalent definition is that the number of ...
A p-adic integer is a p-adic number of the form sum_(k=m)^(infty)a_kp^k, where m>=0, a_k are integers, and p is prime. It is sufficient to take a_k in the set {0,1,...,p-1}. ...
Any nonzero rational number x can be represented by x=(p^ar)/s, (1) where p is a prime number, r and s are integers not divisible by p, and a is a unique integer. The p-adic ...
The q-analog of the binomial theorem (1-z)^n=1-nz+(n(n-1))/(1·2)z^2-(n(n-1)(n-2))/(1·2·3)z^3+... (1) is given by (1-z/(q^n))(1-z/(q^(n-1)))...(1-z/q) ...
A q-analog of the Chu-Vandermonde identity given by where _2phi_1(a,b;c;q,z) is the q-hypergeometric function. The identity can also be written as ...
There are several q-analogs of the cosine function. The two natural definitions of the q-cosine defined by Koekoek and Swarttouw (1998) are given by cos_q(z) = ...
Given a real number q>1, the series x=sum_(n=0)^inftya_nq^(-n) is called the q-expansion, or beta-expansion (Parry 1957), of the positive real number x if, for all n>=0, ...
The exponential function has two different natural q-extensions, denoted e_q(z) and E_q(z). They are defined by e_q(z) = sum_(n=0)^(infty)(z^n)/((q;q)_n) (1) = _1phi_0[0; ...
The q-analog of the factorial (by analogy with the q-gamma function). For k an integer, the q-factorial is defined by [k]_q! = faq(k,q) (1) = ...
A q-analog of the gamma function defined by Gamma_q(x)=((q;q)_infty)/((q^x;q)_infty)(1-q)^(1-x), (1) where (x,q)_infty is a q-Pochhammer symbol (Koepf 1998, p. 26; Koekoek ...
...
View search results from all Wolfram sites (105888 matches)

