TOPICS
Search

Search Results for ""


121 - 130 of 383 for Trigonometric and circularSearch Results
The havercosine, also called the haversed cosine, is a little-used trigonometric function defined by havercosz = vercosz (1) = 1/2(1+cosz), (2) where vercosz is the vercosine ...
By the definition of the trigonometric functions, cos0 = 1 (1) cot0 = infty (2) csc0 = infty (3) sec0 = 1 (4) sin0 = 0 (5) tan0 = 0. (6)
By the definition of the functions of trigonometry, the sine of pi is equal to the y-coordinate of the point with polar coordinates (r,theta)=(1,pi), giving sinpi=0. ...
cos(pi/(15)) = 1/8(sqrt(30+6sqrt(5))+sqrt(5)-1) (1) cos((2pi)/(15)) = 1/8(sqrt(30-6sqrt(5))+sqrt(5)+1) (2) cos((4pi)/(15)) = 1/8(sqrt(30+6sqrt(5))-sqrt(5)+1) (3) ...
By the definition of the functions of trigonometry, the sine of pi/2 is equal to the y-coordinate of the point with polar coordinates (r,theta)=(1,pi/2), giving sin(pi/2)=1. ...
Values of the trigonometric functions can be expressed exactly for integer multiples of pi/20. For cosx, cos(pi/(20)) = 1/4sqrt(8+2sqrt(10+2sqrt(5))) (1) cos((3pi)/(20)) = ...
Trigonometric functions of pi/p for p prime have an especially complicated Galois-minimal representation. In particular, the case cos(pi/23) requires approximately 500 MB of ...
Construction of the angle pi/3=60 degrees produces a 30-60-90 triangle, which has angles theta=pi/3 and theta/2=pi/6. From the above diagram, write y=sintheta for the ...
Construction of the angle pi/4=45 degrees produces an isosceles right triangle. Since the sides are equal, sin^2theta+cos^2theta=2sin^2theta=1, (1) so solving for ...
Construction of the angle pi/6=30 degrees produces a 30-60-90 triangle, which has angles theta=pi/6 and 2theta=pi/3. From the above diagram, write y=sintheta for the vertical ...
1 ... 10|11|12|13|14|15|16 ... 39 Previous Next

...