Search Results for ""
141 - 150 of 3308 for Totient FunctionSearch Results
A Bessel function Z_n(x) is a function defined by the recurrence relations Z_(n+1)+Z_(n-1)=(2n)/xZ_n (1) and Z_(n+1)-Z_(n-1)=-2(dZ_n)/(dx). (2) The Bessel functions are more ...
Consider a formula in prenex normal form, Q_1x_1...Q_nx_nN. If Q_i is the existential quantifier (1<=i<=n) and x_k, ..., x_m are all the universal quantifier variables such ...
A function of two variables is bilinear if it is linear with respect to each of its variables. The simplest example is f(x,y)=xy.
A univariate function f(x) is said to be odd provided that f(-x)=-f(x). Geometrically, such functions are symmetric about the origin. Examples of odd functions include x, ...
The hemisphere function is defined as H(x,y)={sqrt(a-x^2-y^2) for sqrt(x^2+y^2)<=a; 0 for sqrt(x^2+y^2)>a. (1) Watson (1966) defines a hemispherical function as a function S ...
A finite extension K=Q(z)(w) of the field Q(z) of rational functions in the indeterminate z, i.e., w is a root of a polynomial a_0+a_1alpha+a_2alpha^2+...+a_nalpha^n, where ...
The function defined by (1) (Heatley 1943; Abramowitz and Stegun 1972, p. 509), where _1F_1(a;b;z) is a confluent hypergeometric function of the first kind and Gamma(z) is ...
A special function mostly commonly denoted psi_n(z), psi^((n))(z), or F_n(z-1) which is given by the (n+1)st derivative of the logarithm of the gamma function Gamma(z) (or, ...
The Struve function, denoted H_n(z) or occasionally H_n(z), is defined as H_nu(z)=(1/2z)^(nu+1)sum_(k=0)^infty((-1)^k(1/2z)^(2k))/(Gamma(k+3/2)Gamma(k+nu+3/2)), (1) where ...
Number theory is a vast and fascinating field of mathematics, sometimes called "higher arithmetic," consisting of the study of the properties of whole numbers. Primes and ...
...