TOPICS
Search

Search Results for ""


831 - 840 of 3505 for Theta functionSearch Results
f(x)=1/x-|_1/x_| for x in [0,1], where |_x_| is the floor function. The natural invariant of the map is rho(y)=1/((1+y)ln2).
sum_(k=-n)^n(-1)^k(n+b; n+k)(n+c; c+k)(b+c; b+k)=(Gamma(b+c+n+1))/(n!Gamma(b+1)Gamma(c+1)), where (n; k) is a binomial coefficient and Gamma(x) is a gamma function.
Legendre and Whittaker and Watson's (1990) term for the beta integral int_0^1x^p(1-x)^qdx, whose solution is the beta function B(p+1,q+1).
The first isodynamic point S has triangle center function alpha_(15)=sin(A+1/3pi) and is Kimberling center X_(15) (Kimberling 1998, p. 68).
Schroeder (1991) calls the ceiling function symbols [ and ] the "gallows" because of their similarity in appearance to the structure used for hangings.
Let D=D(z_0,R) be an open disk, and let u be a harmonic function on D such that u(z)>=0 for all z in D. Then for all z in D, we have 0<=u(z)<=(R/(R-|z-z_0|))^2u(z_0).
For a real number x, the mantissa is defined as the positive fractional part x-|_x_|=frac(x), where |_x_| denotes the floor function. For example, for x=3.14159, the mantissa ...
A maximum likelihood estimator is a value of the parameter a such that the likelihood function is a maximum (Harris and Stocket 1998, p. 824).
The approximating polynomial which has the smallest maximum deviation from the true function. It is closely approximated by the Chebyshev polynomials of the first kind.
The Poisson integral with n=0, J_0(z)=1/piint_0^picos(zcostheta)dtheta, where J_0(z) is a Bessel function of the first kind.
1 ... 81|82|83|84|85|86|87 ... 351 Previous Next

...