TOPICS
Search

Search Results for ""


31 - 40 of 3505 for Theta functionSearch Results
The apodization function A(x)=1-(x^2)/(a^2). (1) Its full width at half maximum is sqrt(2)a. Its instrument function is I(k) = 2asqrt(2pi)(J_(3/2)(2pika))/((2pika)^(3/2)) (2) ...
The amazing identity for all theta, where Gamma(z) is the gamma function. Equating coefficients of theta^0, theta^4, and theta^8 gives some amazing identities for the ...
A doubly periodic function with periods 2omega_1 and 2omega_2 such that f(z+2omega_1)=f(z+2omega_2)=f(z), (1) which is analytic and has no singularities except for poles in ...
A partial function is a function that is not total.
The xi-function is the function xi(z) = 1/2z(z-1)(Gamma(1/2z))/(pi^(z/2))zeta(z) (1) = ((z-1)Gamma(1/2z+1)zeta(z))/(sqrt(pi^z)), (2) where zeta(z) is the Riemann zeta ...
The function lambda(n)=(-1)^(Omega(n)), (1) where Omega(n) is the number of not necessarily distinct prime factors of n, with Omega(1)=0. The values of lambda(n) for n=1, 2, ...
A zero function is a function that is almost everywhere zero. The function sometimes known as "the zero function" is the constant function with constant c=0, i.e., f(x)=0 ...
The modular group Gamma is the set of all transformations w of the form w(t)=(at+b)/(ct+d), where a, b, c, and d are integers and ad-bc=1. A Gamma-modular function is then ...
The Dedekind eta function is defined over the upper half-plane H={tau:I[tau]>0} by eta(tau) = q^_^(1/24)(q^_)_infty (1) = q^_^(1/24)product_(k=1)^(infty)(1-q^_^k) (2) = ...
For a discrete function f(n), the summatory function is defined by F(n)=sum_(k in D)^nf(k), where D is the domain of the function.
1|2|3|4|5|6|7 ... 351 Previous Next

...