Search Results for ""
2011 - 2020 of 3505 for Theta functionSearch Results
Amazingly, the distribution of a difference of two normally distributed variates X and Y with means and variances (mu_x,sigma_x^2) and (mu_y,sigma_y^2), respectively, is ...
A hypergeometric class of orthogonal polynomials defined by R_n(lambda(x);alpha,beta,gamma,delta) =_4F_3(-n,n+alpha+beta+1,-x,x+gamma+delta+1; alpha+1,beta+delta+1,gamma+1;1) ...
An epicycloid with n=5 cusps, named after the buttercup genus Ranunculus (Madachy 1979). Its parametric equations are x = a[6cost-cos(6t)] (1) y = a[6sint-sin(6t)]. (2) Its ...
The sum of reciprocal multifactorials can be given in closed form by the beautiful formula m(n) = sum_(n=0)^(infty)1/(n!...!_()_(k)) (1) = ...
A related rates problem is the determination of the rate at which a function defined in terms of other functions changes. Related rates problems can be solved by computing ...
Let there be x successes out of n Bernoulli trials. The sample proportion is the fraction of samples which were successes, so p^^=x/n. (1) For large n, p^^ has an ...
If f(x)=f_0+f_1x+f_2x^2+...+f_nx^n+..., (1) then S(n,j)=f_jx^j+f_(j+n)x^(j+n)+f_(j+2n)x^(j+2n)+... (2) is given by S(n,j)=1/nsum_(t=0)^(n-1)w^(-jt)f(w^tx), (3) where ...
The Skewes number (or first Skewes number) is the number Sk_1 above which pi(n)<li(n) must fail (assuming that the Riemann hypothesis is true), where pi(n) is the prime ...
There are (at least) two equations known as Sommerfeld's formula. The first is J_nu(z)=1/(2pi)int_(-eta+iinfty)^(2pi-eta+iinfty)e^(izcost)e^(inu(t-pi/2))dt, where J_nu(z) is ...
Orthogonal polynomials associated with weighting function w(x) = pi^(-1/2)kexp(-k^2ln^2x) (1) = pi^(-1/2)kx^(-k^2lnx) (2) for x in (0,infty) and k>0. Defining ...
...