If
  | 
 
(1)
 
 | 
 
then
  | 
 
(2)
 
 | 
 
is given by
  | 
 
(3)
 
 | 
 
where 
.
When applied to the generating function
  | 
 
(4)
 
 | 
 
it gives the identity
![sum_(m=0)^infty(n; t+sm)=1/ssum_(j=0)^(s-1)cos[(pi(n-2t)j)/s]2^ncos^n((pij)/s)](/images/equations/SeriesMultisection/NumberedEquation5.svg)  | 
 
(5)
 
 | 
 
with integers 
 (and where the sum can be taken only up to 
).
Other multisection examples are given by Somos (2006).
 
See also
Multisection, 
Series,
Series Reversion
Explore with Wolfram|Alpha
References
Honsberger, R. Mathematical Gems III. Washington, DC: Math. Assoc. Amer., pp. 210-214, 1985.Somos,
 M. "A Multisection of 
-Series." Mar 31, 2006. http://cis.csuohio.edu/~somos/multiq.html.Referenced
 on Wolfram|Alpha
Series Multisection
Cite this as:
Weisstein, Eric W. "Series Multisection."
From MathWorld--A Wolfram Resource. https://mathworld.wolfram.com/SeriesMultisection.html
Subject classifications