TOPICS
Search

Search Results for ""


151 - 160 of 3505 for Theta functionSearch Results
A function of two variables is bilinear if it is linear with respect to each of its variables. The simplest example is f(x,y)=xy.
A univariate function f(x) is said to be odd provided that f(-x)=-f(x). Geometrically, such functions are symmetric about the origin. Examples of odd functions include x, ...
The hemisphere function is defined as H(x,y)={sqrt(a-x^2-y^2) for sqrt(x^2+y^2)<=a; 0 for sqrt(x^2+y^2)>a. (1) Watson (1966) defines a hemispherical function as a function S ...
A finite extension K=Q(z)(w) of the field Q(z) of rational functions in the indeterminate z, i.e., w is a root of a polynomial a_0+a_1alpha+a_2alpha^2+...+a_nalpha^n, where ...
The function defined by (1) (Heatley 1943; Abramowitz and Stegun 1972, p. 509), where _1F_1(a;b;z) is a confluent hypergeometric function of the first kind and Gamma(z) is ...
A special function mostly commonly denoted psi_n(z), psi^((n))(z), or F_n(z-1) which is given by the (n+1)st derivative of the logarithm of the gamma function Gamma(z) (or, ...
The Struve function, denoted H_n(z) or occasionally H_n(z), is defined as H_nu(z)=(1/2z)^(nu+1)sum_(k=0)^infty((-1)^k(1/2z)^(2k))/(Gamma(k+3/2)Gamma(k+nu+3/2)), (1) where ...
The apodization function A(x)=(1-(x^2)/(a^2))^2. Its full width at half maximum is sqrt(4-2sqrt(2))a. Its instrument function is ...
The jinc function is defined as jinc(x)=(J_1(x))/x, (1) where J_1(x) is a Bessel function of the first kind, and satisfies lim_(x->0)jinc(x)=1/2. The derivative of the jinc ...
The function from a given nonempty set X to the power set P(X) that maps every element x of X to the set {x}.
1 ... 13|14|15|16|17|18|19 ... 351 Previous Next

...