Search Results for ""
10121 - 10130 of 13134 for Theory of mindSearch Results
The Heine-Borel theorem states that a subspace of R^n (with the usual topology) is compact iff it is closed and bounded. The Heine-Borel theorem can be proved using the ...
In two-dimensional Cartesian coordinates, attempt separation of variables by writing F(x,y)=X(x)Y(y), (1) then the Helmholtz differential equation becomes ...
In two-dimensional polar coordinates, the Helmholtz differential equation is 1/rpartial/(partialr)(r(partialF)/(partialr))+1/(r^2)(partial^2F)/(partialtheta^2)+k^2F=0. (1) ...
On the surface of a sphere, attempt separation of variables in spherical coordinates by writing F(theta,phi)=Theta(theta)Phi(phi), (1) then the Helmholtz differential ...
The hemicube, which might also be called the square hemiprism, is a simple solid that serves as an example of one of the two topological classes of convex hexahedron having 7 ...
When the elongated square pyramid with unit edge lengths (i.e., an equilateral obelisk) is truncated by a plane passing through opposite corners of its square base and the ...
A purple cow is a confirming instance of the hypothesis that all crows are black.
The regular polygon of 17 sides is called the heptadecagon, or sometimes the heptakaidecagon. Gauss proved in 1796 (when he was 19 years old) that the heptadecagon is ...
Let H be a heptagon with seven vertices given in cyclic order inscribed in a conic. Then the Pascal lines of the seven hexagons obtained by omitting each vertex of H in turn ...
A heptahedron is a polyhedron with seven faces. Because there are 34 heptahedral graphs, there are 34 topologically distinct convex heptahedra. There are three semiregular ...
...