Search Results for ""
531 - 540 of 2285 for Symmetric Positive Definite MatrixSearch Results
![](/common/images/search/spacer.gif)
The distance polynomial is the characteristic polynomial of the graph distance matrix. The following table summarizes distance polynomials for some common classes of graphs. ...
Hadamard matrices H_n can be constructed using finite field GF(p^m) when p=4l-1 and m is odd. Pick a representation r relatively prime to p. Then by coloring white ...
Let A be an n×n real square matrix with n>=2 such that |sum_(i=1)^nsum_(j=1)^na_(ij)s_it_j|<=1 (1) for all real numbers s_1, s_2, ..., s_n and t_1, t_2, ..., t_n such that ...
The Walsh functions consist of trains of square pulses (with the allowed states being -1 and 1) such that transitions may only occur at fixed intervals of a unit time step, ...
A binary quadratic form is a quadratic form in two variables having the form Q(x,y)=ax^2+2bxy+cy^2, (1) commonly denoted <a,b,c>. Consider a binary quadratic form with real ...
A smooth manifold M=(M,g) is said to be semi-Riemannian if the indexMetric Tensor Index of g is nonzero. Alternatively, a smooth manifold is semi-Riemannian provided that it ...
The metric tensor g on a smooth manifold M=(M,g) is said to be semi-Riemannian if the index of g is nonzero. In nearly all literature, the term semi-Riemannian is used ...
A strong Riemannian metric on a smooth manifold M is a (0,2) tensor field g which is both a strong pseudo-Riemannian metric and positive definite. In a very precise way, the ...
A weak Riemannian metric on a smooth manifold M is a (0,2) tensor field g which is both a weak pseudo-Riemannian metric and positive definite. In a very precise way, the ...
A k×n Latin rectangle is a k×n matrix with elements a_(ij) in {1,2,...,n} such that entries in each row and column are distinct. If k=n, the special case of a Latin square ...
![](/common/images/search/spacer.gif)
...