TOPICS
Search

Search Results for ""


711 - 720 of 1557 for SumSearch Results
Let f(x) be a real entire function of the form f(x)=sum_(k=0)^inftygamma_k(x^k)/(k!), (1) where the gamma_ks are positive and satisfy Turán's inequalities ...
A Kapteyn series is a series of the form sum_(n=0)^inftyalpha_nJ_(nu+n)[(nu+n)z], (1) where J_n(z) is a Bessel function of the first kind. Examples include Kapteyn's original ...
Let F be a differential field with constant field K. For f in F, suppose that the equation g^'=f (i.e., g=intf) has a solution g in G, where G is an elementary extension of F ...
Let x=(x_1,x_2,...,x_n) and y=(y_1,y_2,...,y_n) be nonincreasing sequences of real numbers. Then x majorizes y if, for each k=1, 2, ..., n, sum_(i=1)^kx_i>=sum_(i=1)^ky_i, ...
A modification of Legendre's formula for the prime counting function pi(x). It starts with |_x_| = (1) where |_x_| is the floor function, P_2(x,a) is the number of integers ...
sum_(k=0)^(infty)[((m)_k)/(k!)]^3 = 1+(m/1)^3+[(m(m+1))/(1·2)]^3+... (1) = (Gamma(1-3/2m))/([Gamma(1-1/2m)]^3)cos(1/2mpi), (2) where (m)_k is a Pochhammer symbol and Gamma(z) ...
If (1-z)^(alpha+beta-gamma-1/2)_2F_1(2alpha,2beta;2gamma;z)=sum_(n=0)^inftya_nz^n, (1) where _2F_1(a,b;c;z) is a hypergeometric function, then (2) where (a)_n is a Pochhammer ...
The paper folding constant is the constant given by P = sum_(k=0)^(infty)1/(2^(2^k))(1-1/(2^(2^(k+2))))^(-1) (1) = sum_(k=0)^(infty)(8^(2^k))/(2^(2^(k+2))-1) (2) = ...
The Poisson-Charlier polynomials c_k(x;a) form a Sheffer sequence with g(t) = e^(a(e^t-1)) (1) f(t) = a(e^t-1), (2) giving the generating function ...
The positions of the geometric centroid of a planar non-self-intersecting polygon with vertices (x_1,y_1), ..., (x_n,y_n) are x^_ = ...
1 ... 69|70|71|72|73|74|75 ... 156 Previous Next

...