Search Results for ""
411 - 420 of 1557 for SumSearch Results

For a general two-player zero-sum game, max_(i<=m)min_(j<=n)a_(ij)<=min_(j<=n)max_(i<=m)a_(ij). If the two are equal, then write ...
Let b_1=1 and b_2=2 and for n>=3, let b_n be the least integer >b_(n-1) which can be expressed as the sum of two or more consecutive terms. The resulting sequence is 1, 2, 3, ...
The Prosthaphaeresis formulas, also known as Simpson's formulas, are trigonometry formulas that convert a product of functions into a sum or difference. They are given by ...
The Randić matrix A_(Randic) of a simple graph is a weighted adjacency matrix with weight f(d_i,d_j)=1/(sqrt(d_id_j)), (1) where d_i are the vertex degrees of the graph. In ...
sum_(k=0)^dr_k^B(d-k)!x^k=sum_(k=0)^d(-1)^kr_k^(B^_)(d-k)!x^k(x+1)^(d-k).
In general, an integer n is divisible by d iff the digit sum s_(d+1)(n) is divisible by d. Write a positive decimal integer a out digit by digit in the form ...
The dilogarithm Li_2(z) is a special case of the polylogarithm Li_n(z) for n=2. Note that the notation Li_2(x) is unfortunately similar to that for the logarithmic integral ...
The Jacobi triple product is the beautiful identity product_(n=1)^infty(1-x^(2n))(1+x^(2n-1)z^2)(1+(x^(2n-1))/(z^2))=sum_(m=-infty)^inftyx^(m^2)z^(2m). (1) In terms of the ...
A (k,l)-multigrade equation is a Diophantine equation of the form sum_(i=1)^ln_i^j=sum_(i=1)^lm_i^j (1) for j=1, ..., k, where m and n are l-vectors. Multigrade identities ...
The stability index Z^_(G) of a graph G is defined by Z^_=sum_(k=0)^(|_n/2_|)|c_(2k)|, where c_k is the kth coefficient of the characteristic polynomial and |_n_| denotes the ...

...