TOPICS
Search

Search Results for ""


151 - 160 of 662 for Spherical HarmonicSearch Results
The surface area of a spherical segment. Call the radius of the sphere R, the upper and lower radii b and a, respectively, and the height of the spherical segment h. The zone ...
The polar sine is a function of a vertex angle of an n-dimensional parallelotope or simplex. If the content of the parallelotope is P and the lengths of the n edges of the ...
Suppose the harmonic series converges to h: sum_(k=1)^infty1/k=h. Then rearranging the terms in the sum gives h-1=h, which is a contradiction.
For a smooth harmonic map u:M->N, where del is the gradient, Ric is the Ricci curvature tensor, and Riem is the Riemann tensor.
In a 1631 edition of Academiae Algebrae, J. Faulhaber published the general formula for the power sum of the first n positive integers, sum_(k=1)^(n)k^p = H_(n,-p) (1) = ...
If two pairs of opposite polygon vertices of a complete quadrilateral are pairs of harmonic conjugate points, then the third pair of opposite polygon vertices is likewise a ...
On a compact oriented Finsler manifold without boundary, every cohomology class has a unique harmonic representation. The dimension of the space of all harmonic forms of ...
For all integers n and |x|<a, lambda_n^((t))(x+a)=sum_(k=0)^infty|_n; k]lambda_(n-k)^((t))(a)x^k, where lambda_n^((t)) is the harmonic logarithm and |_n; k] is a Roman ...
There are several theorems that generally are known by the generic name "Pappus's Theorem." They include Pappus's centroid theorem, the Pappus chain, Pappus's harmonic ...
Since (2a)/(a+b)=(2ab)/((a+b)b), (1) it follows that a/((a+b)/2)=((2ab)/(a+b))/b, (2) so a/A=H/b, (3) where A and H are the arithmetic mean and harmonic mean of a and b. This ...
1 ... 13|14|15|16|17|18|19 ... 67 Previous Next

...