Search Results for ""
391 - 400 of 2579 for Spherical Bessel Differential EquationSearch Results
![](/common/images/search/spacer.gif)
The 2-1 equation A^n+B^n=C^n (1) is a special case of Fermat's last theorem and so has no solutions for n>=3. Lander et al. (1967) give a table showing the smallest n for ...
int_(-infty)^infty(J_(mu+xi)(x))/(x^(mu+xi))(J_(nu-xi)(y))/(y^(nu-xi))e^(itxi)dxi =[(2cos(1/2t))/(x^2e^(-it/2)+y^2e^(it/2))]^((mu+nu)/2) ...
int_0^inftyJ_0(ax)cos(cx)dx={0 a<c; 1/(sqrt(a^2-c^2)) a>c (1) int_0^inftyJ_0(ax)sin(cx)dx={1/(sqrt(c^2-a^2)) a<c; 0 a>c, (2) where J_0(z) is a zeroth order Bessel function of ...
The 6.1.2 equation A^6=B^6+C^6 (1) is a special case of Fermat's last theorem with n=6, and so has no solution. No 6.1.n solutions are known for n<=6 (Lander et al. 1967; Guy ...
The 10.1.2 equation A^(10)=B^(10)+C^(10) (1) is a special case of Fermat's last theorem with n=10, and so has no solution. No 10.1.n solutions are known with n<13. A 10.1.13 ...
The symbol ker has at least two different meanings in mathematics. It can refer to a special function related to Bessel functions, or (written either with a capital or ...
The symbol ker has at least two different meanings in mathematics. It can refer to a special function related to Bessel functions, or (written either with a capital or ...
A Kapteyn series is a series of the form sum_(n=0)^inftyalpha_nJ_(nu+n)[(nu+n)z], (1) where J_n(z) is a Bessel function of the first kind. Examples include Kapteyn's original ...
The cylinder function is defined as C(x,y)={1 for sqrt(x^2+y^2)<=a; 0 for sqrt(x^2+y^2)>a. (1) The Bessel functions are sometimes also called cylinder functions. To find the ...
The second solution Q_l(x) to the Legendre differential equation. The Legendre functions of the second kind satisfy the same recurrence relation as the Legendre polynomials. ...
![](/common/images/search/spacer.gif)
...