TOPICS
Search

Search Results for ""


181 - 190 of 2579 for Spherical Bessel Differential EquationSearch Results
The formulas j_n(z) = z^n(-1/zd/(dz))^n(sinz)/z (1) y_n(z) = -z^n(-1/zd/(dz))^n(cosz)/z (2) for n=0, 1, 2, ..., where j_n(z) is a spherical Bessel function of the first kind ...
j_n(z)=(z^n)/(2^(n+1)n!)int_0^picos(zcostheta)sin^(2n+1)thetadtheta, where j_n(z) is a spherical Bessel function of the first kind.
Using the notation of Byerly (1959, pp. 252-253), Laplace's equation can be reduced to (1) where alpha = cint_c^lambda(dlambda)/(sqrt((lambda^2-b^2)(lambda^2-c^2))) (2) = ...
Consider the differential equation satisfied by w=z^(-1/2)W_(k,-1/4)(1/2z^2), (1) where W is a Whittaker function, which is given by ...
The Lommel polynomials R_(m,nu)(z) arise from the equation J_(m+nu)(z)=J_nu(z)R_(m,nu)(z)-J_(nu-1)(z)R_(m-1,nu+1)(z), (1) where J_nu(z) is a Bessel function of the first kind ...
The sum of the absolute squares of the spherical harmonics Y_l^m(theta,phi) over all values of m is sum_(m=-l)^l|Y_l^m(theta,phi)|^2=(2l+1)/(4pi). (1) The double sum over m ...
Let a spherical triangle Delta have angles A, B, and C. Then the spherical excess is given by Delta=A+B+C-pi.
A formula also known as the Legendre addition theorem which is derived by finding Green's functions for the spherical harmonic expansion and equating them to the generating ...
A differential ideal is an ideal I in the ring of smooth forms on a manifold M. That is, it is closed under addition, scalar multiplication, and wedge product with an ...
The partial differential equation u_(xy)+alphau_x+betau_y+gammau_xu_y=0.
1 ... 16|17|18|19|20|21|22 ... 258 Previous Next

...