Search Results for ""
1401 - 1410 of 2579 for Spherical Bessel Differential EquationSearch Results
![](/common/images/search/spacer.gif)
A four-vector a_mu is said to be spacelike if its four-vector norm satisfies a_mua^mu>0. One should note that the four-vector norm is nothing more than a special case of the ...
The Lie derivative of a spinor psi is defined by L_Xpsi(x)=lim_(t->0)(psi^~_t(x)-psi(x))/t, where psi^~_t is the image of psi by a one-parameter group of isometries with X ...
A strong pseudo-Riemannian metric on a smooth manifold M is a (0,2) tensor field g which is symmetric and for which, at each m in M, the map v_m|->g_m(v_m,·) is an ...
A strong Riemannian metric on a smooth manifold M is a (0,2) tensor field g which is both a strong pseudo-Riemannian metric and positive definite. In a very precise way, the ...
Any square matrix A can be written as a sum A=A_S+A_A, (1) where A_S=1/2(A+A^(T)) (2) is a symmetric matrix known as the symmetric part of A and A_A=1/2(A-A^(T)) (3) is an ...
A second-tensor rank symmetric tensor is defined as a tensor A for which A^(mn)=A^(nm). (1) Any tensor can be written as a sum of symmetric and antisymmetric parts A^(mn) = ...
The taxicab metric, also called the Manhattan distance, is the metric of the Euclidean plane defined by g((x_1,y_1),(x_2,y_2))=|x_1-x_2|+|y_1-y_2|, for all points ...
The contraction of a tensor is obtained by setting unlike indices equal and summing according to the Einstein summation convention. Contraction reduces the tensor rank by 2. ...
Abstractly, the tensor direct product is the same as the vector space tensor product. However, it reflects an approach toward calculation using coordinates, and indices in ...
The tilde is the mark "~" placed on top of a symbol to indicate some special property. x^~ is voiced "x-tilde." The tilde symbol is commonly used to denote an operator. In ...
![](/common/images/search/spacer.gif)
...