TOPICS
Search

Search Results for ""


121 - 130 of 2579 for Spherical Bessel Differential EquationSearch Results
The ordinary differential equation (x^py^')^'+/-x^sigmay^n=0.
The scale factors are h_u=h_v=sqrt(u^2+v^2), h_theta=uv and the separation functions are f_1(u)=u, f_2(v)=v, f_3(theta)=1, given a Stäckel determinant of S=u^2+v^2. The ...
The inhomogeneous Helmholtz differential equation is del ^2psi(r)+k^2psi(r)=rho(r), (1) where the Helmholtz operator is defined as L^~=del ^2+k^2. The Green's function is ...
For R[nu]>-1/2, J_nu(z)=(z/2)^nu2/(sqrt(pi)Gamma(nu+1/2))int_0^(pi/2)cos(zcost)sin^(2nu)tdt, where J_nu(z) is a Bessel function of the first kind, and Gamma(z) is the gamma ...
When the index nu is real, the functions J_nu(z), J_nu^'(z), Y_nu(z), and Y_nu^'(z) each have an infinite number of real zeros, all of which are simple with the possible ...
An inhomogeneous linear ordinary differential equation with constant coefficients is an ordinary differential equation in which coefficients are constants (i.e., not ...
In elliptic cylindrical coordinates, the scale factors are h_u=h_v=sqrt(sinh^2u+sin^2v), h_z=1, and the separation functions are f_1(u)=f_2(v)=f_3(z)=1, giving a Stäckel ...
A homogeneous linear ordinary differential equation with constant coefficients is an ordinary differential equation in which coefficients are constants (i.e., not functions), ...
If one solution (y_1) to a second-order ordinary differential equation y^('')+P(x)y^'+Q(x)y=0 (1) is known, the other (y_2) may be found using the so-called reduction of ...
A series of the form sum_(n=0)^inftya_nJ_(nu+n)(z), (1) where nu is a real and J_(nu+n)(z) is a Bessel function of the first kind. Special cases are ...
1 ... 10|11|12|13|14|15|16 ... 258 Previous Next

...