Search Results for ""
561 - 570 of 3276 for Special Unitary GroupSearch Results
![](/common/images/search/spacer.gif)
Special cases of general formulas due to Bessel. J_0(sqrt(z^2-y^2))=1/piint_0^pie^(ycostheta)cos(zsintheta)dtheta, where J_0(z) is a Bessel function of the first kind. Now, ...
sum_(k=0)^(infty)[((m)_k)/(k!)]^3 = 1+(m/1)^3+[(m(m+1))/(1·2)]^3+... (1) = (Gamma(1-3/2m))/([Gamma(1-1/2m)]^3)cos(1/2mpi), (2) where (m)_k is a Pochhammer symbol and Gamma(z) ...
A sum which includes both the Jacobi triple product and the q-binomial theorem as special cases. Ramanujan's sum is ...
An intrinsic property of a mathematical object which causes it to remain invariant under certain classes of transformations (such as rotation, reflection, inversion, or more ...
Let s(n)=sigma(n)-n, where sigma(n) is the divisor function and s(n) is the restricted divisor function. Then the sequence of numbers s^0(n)=n,s^1(n)=s(n),s^2(n)=s(s(n)),... ...
A tag system in which a list of n tag rules (each of a special form) is applied to a system in sequential order and then starting again from the first rule. In a cyclic tag ...
The cross number of a zero-system sigma={g_1,g_2,...,g_n} of G is defined as K(sigma)=sum_(i=1)^n1/(|g_i|) The cross number of a group G has two different definitions. 1. ...
In a monoid or multiplicative group where the operation is a product ·, the multiplicative inverse of any element g is the element g^(-1) such that g·g^(-1)=g^(-1)·g=1, with ...
Let K be a number field with r_1 real embeddings and 2r_2 imaginary embeddings and let r=r_1+r_2-1. Then the multiplicative group of units U_K of K has the form ...
Any symmetric polynomial (respectively, symmetric rational function) can be expressed as a polynomial (respectively, rational function) in the elementary symmetric ...
![](/common/images/search/spacer.gif)
...