TOPICS
Search

Fundamental Unit


Let K be a number field with r_1 real embeddings and 2r_2 imaginary embeddings and let r=r_1+r_2-1. Then the multiplicative group of units U_K of K has the form

 U_K={zeta_K^(e_0)epsilon_1^(e_1)epsilon_2^(e_2)...epsilon_r^(e_r):e_i in Z},
(1)

where zeta_K is a primitive wth root of unity, for the maximal w such that there is a primitive wth root of unity of K. Whenever K is quadratic, w=2 (unless K=Q(i), in which case w=4, or K=Q((1+sqrt(-3))/2), in which case w=6). Thus, U_K is isomorphic to the group C_w×Z^r. The r generators epsilon_i for 1<=i<=r are called the fundamental units of K. Real quadratic number fields and imaginary cubic number fields have just one fundamental unit and imaginary quadratic number fields have no fundamental units. Observe that w is the order of the torsion subgroup of U_K and that the epsilon_i are determined up to a change of Z-basis and up to a multiplication by a root of unity.

The fundamental unit of a number field is intimately connected with the regulator.

The fundamental units of a field Q[a] generated by the algebraic number a can be computed in the Wolfram Language using NumberFieldFundamentalUnits[a].

In a real quadratic field, there exists a special unit eta known as the fundamental unit such that all units rho are given by rho=+/-eta^m, for m=0, +/-1, +/-2, .... The notation epsilon_0 is sometimes used instead of eta (Zucker and Robertson 1976). The fundamental units for real quadratic fields Q(sqrt(D)) may be computed from the fundamental solution of the Pell equation

 T^2-DU^2=+/-4,
(2)

where the sign is taken such that the solution (T,U) has smallest possible positive T (LeVeque 1977; Cohn 1980, p. 101; Hua 1982; Borwein and Borwein 1987, p. 294). If the positive sign is taken, then one solution is simply given by (T,U)=(2x,2y), where (x,y) is the solution to the Pell equation

 x^2-Dy^2=1.
(3)

However, this need not be the minimal solution. For example, the solution to Pell equation

 x^2-21y^2=1
(4)

is (x,y)=(55,12), so (T,U)=(2x,2y)=(110,24), but (T,U)=(5,1) is the minimal solution.

For nonsquare positive integers, the minimal Ts are given by 2, 4, 1, 10, 16, 2, 6, 20, 4, 3, 30, 8, 8, 34, 340, 4, 5, ... (OEIS A048941), while the minimal Us are given by 2, 2, 1, 4, 6, 1, 2, 6, 1, 1, 8, 2, 2, 8, 78, 1, 1, 84, ... (OEIS A048942). Given a minimal (T,U), the fundamental unit is given by

 eta=1/2(T+Usqrt(D))
(5)

(Cohn 1980, p. 101).

The following table gives fundamental units for small D.

Deta(D)Deta(D)
21+sqrt(2)545+2sqrt(6)
32+sqrt(3)5589+12sqrt(55)
51/2(1+sqrt(5))5615+4sqrt(14)
65+2sqrt(6)57151+20sqrt(57)
78+3sqrt(7)5899+13sqrt(58)
81+sqrt(2)59530+69sqrt(59)
103+sqrt(10)604+sqrt(15)
1110+3sqrt(11)611/2(39+5sqrt(61))
122+sqrt(3)6263+8sqrt(62)
131/2(3+sqrt(13))638+3sqrt(7)
1415+4sqrt(14)658+sqrt(65)
154+sqrt(15)6665+8sqrt(66)
174+sqrt(17)6748842+5967sqrt(67)
181+sqrt(2)684+sqrt(17)
19170+39sqrt(19)691/2(25+3sqrt(69))
201/2(1+sqrt(5))70251+30sqrt(70)
211/2(5+sqrt(21))713480+413sqrt(71)
22197+42sqrt(22)721+sqrt(2)
2324+5sqrt(23)731068+125sqrt(73)
245+2sqrt(6)7443+5sqrt(74)
265+sqrt(26)752+sqrt(3)
272+sqrt(3)76170+39sqrt(19)
288+3sqrt(7)771/2(9+sqrt(77))
291/2(5+sqrt(29))7853+6sqrt(78)
3011+2sqrt(30)7980+9sqrt(79)
311520+273sqrt(31)801/2(1+sqrt(5))
321+sqrt(2)829+sqrt(82)
3323+4sqrt(33)8382+9sqrt(83)
3435+6sqrt(34)841/2(5+sqrt(21))
356+sqrt(35)851/2(9+sqrt(85))
376+sqrt(37)8610405+1122sqrt(86)
3837+6sqrt(38)8728+3sqrt(87)
3925+4sqrt(39)88197+42sqrt(22)
403+sqrt(10)89500+53sqrt(89)
4132+5sqrt(41)903+sqrt(10)
4213+2sqrt(42)911574+165sqrt(91)
433482+531sqrt(43)9224+5sqrt(23)
4410+3sqrt(11)931/2(29+3sqrt(93))
451/2(1+sqrt(5))942143295+221064sqrt(94)
4624335+3588sqrt(46)9539+4sqrt(95)
4748+7sqrt(47)965+2sqrt(6)
482+sqrt(3)975604+569sqrt(97)
501+sqrt(2)981+sqrt(2)
5150+7sqrt(51)9910+3sqrt(11)
521/2(3+sqrt(13))10110+sqrt(101)
531/2(7+sqrt(53))102101+10sqrt(102)

The following table given the squarefree numbers D for which the denominator of eta(D) is n for n=1 or 2. These sequences turn out to be related to Eisenstein's problem: there is no known fast way to compute them for large D (Finch).

nOEISsquarefree numbers D with denom(eta(D))=n
1A1079975, 13, 21, 29, 53, 61, 69, 77, 85, 93, ...
2A1079982, 3, 6, 7, 10, 11, 14, 15, 17, 19, 22, ...

See also

Pell Equation, Real Quadratic Field, Regulator, Unit

Portions of this entry contributed by Steven Finch

Portions of this entry contributed by Loïc Grenié

Portions of this entry contributed by David Terr

Explore with Wolfram|Alpha

References

Borwein, J. M. and Borwein, P. B. Pi & the AGM: A Study in Analytic Number Theory and Computational Complexity. New York: Wiley, 1987.Cohn, H. "Fundamental Units" and "Construction of Fundamental Units." §6.4 and 6.5 in Advanced Number Theory. New York: Dover, pp. 98-102, and 261-274, 1980.Finch, S. R. "Class Number Theory." http://algo.inria.fr/csolve/clss.pdf.Hua, L. K. Introduction to Number Theory. Berlin: Springer-Verlag, 1982.Ireland, K. and Rosen, M. A Classical Introduction to Modern Number Theory, 2nd ed. New York: Springer-Verlag, p. 192, 1990.LeVeque, W. J. Fundamentals of Number Theory. Reading, MA: Addison-Wesley, 1977.Narkiewicz, W. Elementary and Analytic Number Theory of Algebraic Numbers. Warsaw: Polish Scientific Publishers, 1974.Sloane, N. J. A. Sequences A048941, A048942, A107997, and A107998 in "The On-Line Encyclopedia of Integer Sequences."Stark, H. M. An Introduction to Number Theory. Cambridge, MA: MIT Press, 1994.Zucker, I. J. and Robertson, M. M. "Some Properties of Dirichlet L-Series." J. Phys. A: Math. Gen. 9, 1207-1214, 1976.

Referenced on Wolfram|Alpha

Fundamental Unit

Cite this as:

Finch, Steven; Grenié, Loïc; Terr, David; and Weisstein, Eric W. "Fundamental Unit." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/FundamentalUnit.html

Subject classifications