TOPICS
Search

Search Results for ""


221 - 230 of 3276 for Special Unitary GroupSearch Results
The fourth group isomorphism theorem, also called the lattice group isomorphism theorem, lets G be a group and let N⊴G, where N⊴G indicates that N is a normal subgroup of G. ...
The group of an elliptic curve which has been transformed to the form y^2=x^3+ax+b is the set of K-rational points, including the single point at infinity. The group law ...
E(a,b)/p denotes the elliptic group modulo p whose elements are 1 and infty together with the pairs of integers (x,y) with 0<=x,y<p satisfying y^2=x^3+ax+b (mod p) (1) with a ...
The term "higher dimensional group theory" was introduced by Brown (1982), and refers to a method for obtaining new homotopical information by generalizing to higher ...
The second, or diamond, group isomorphism theorem, states that if G is a group with A,B subset= G, and A subset= N_G(B), then (A intersection B)⊴A and AB/B=A/A intersection ...
The set of all edge automorphisms of G, denoted Aut^*(G). Let L(G) be the line graph of a graph G. Then the edge automorphism group Aut^*(G) is isomorphic to Aut(L(G)), ...
The group Gamma of all Möbius transformations of the form tau^'=(atau+b)/(ctau+d), (1) where a, b, c, and d are integers with ad-bc=1. The group can be represented by the 2×2 ...
The group C_2×C_2×C_2 is one of the three Abelian groups of order 8 (the other two groups are non-Abelian). An example is the modulo multiplication group M_(24) (which is the ...
Let q be a positive integer, then Gamma_0(q) is defined as the set of all matrices [a b; c d] in the modular group Gamma Gamma with c=0 (mod q). Gamma_0(q) is a subgroup of ...
Let G be a group having normal subgroups H and K with H subset= K. Then K/H⊴G/H and (G/H)/(K/H)=G/K, where N⊴G indicates that N is a normal subgroup of G and G=H indicates ...
1 ... 20|21|22|23|24|25|26 ... 328 Previous Next

...