TOPICS
Search

Search Results for ""


2071 - 2080 of 3276 for Special Unitary GroupSearch Results
The invariants of a Weierstrass elliptic function P(z|omega_1,omega_2) are defined by the Eisenstein series g_2(omega_1,omega_2) = 60sum^'_(m,n)Omega_(mn)^(-4) (1) ...
An emirp ("prime" spelled backwards) is a prime whose (base 10) reversal is also prime, but which is not a palindromic prime. The first few are 13, 17, 31, 37, 71, 73, 79, ...
Define an emirpimes ("semiprime" spelled backwards) as a semiprime whose (base 10) reversal is a different semiprime. The first such number is 15, because 15 reversed is 51 ...
The roulette traced by a point P attached to a circle of radius b rolling around the outside of a fixed circle of radius a. These curves were studied by Dürer (1525), ...
The case of the Weierstrass elliptic function with invariants g_2=0 and g_3=1. The corresponding real half-period is given by omega_2 = (Gamma^3(1/3))/(4pi) (1) = ...
The Erdős-Selfridge function g(k) is defined as the least integer bigger than k+1 such that the least prime factor of (g(k); k) exceeds k, where (n; k) is the binomial ...
The "imaginary error function" erfi(z) is an entire function defined by erfi(z)=-ierf(iz), (1) where erf(z) is the erf function. It is implemented in the Wolfram Language as ...
The sequence of numbers obtained by letting a_1=2, and defining a_n=lpf(1+product_(k=1)^(n-1)a_k) where lpf(n) is the least prime factor. The first few terms are 2, 3, 7, 43, ...
The Euler-Gergonne-Soddy triangle is the right triangle DeltaZFlEv created by the pairwise intersections of the Euler line L_E, Soddy line L_S, and Gergonne line L_G. (The ...
An Euler-Jacobi pseudoprime to a base a is an odd composite number n such that (a,n)=1 and the Jacobi symbol (a/n) satisfies (a/n)=a^((n-1)/2) (mod n) (Guy 1994; but note ...
1 ... 205|206|207|208|209|210|211 ... 328 Previous Next

...