Search Results for ""
1691 - 1700 of 3276 for Special Unitary GroupSearch Results

For every k>1, there exist only finite many pairs of powers (p,p^') with p and p^' natural numbers and k=p^'-p.
rho_n(nu,x)=((1+nu-n)_n)/(sqrt(n!x^n))_1F_1(-n;1+nu-n;x), where (a)_n is a Pochhammer symbol and _1F_1(a;b;z) is a confluent hypergeometric function of the first kind.
For R[nu]>-1/2, J_nu(z)=(z/2)^nu2/(sqrt(pi)Gamma(nu+1/2))int_0^(pi/2)cos(zcost)sin^(2nu)tdt, where J_nu(z) is a Bessel function of the first kind, and Gamma(z) is the gamma ...
The polylogarithm Li_n(z), also known as the Jonquière's function, is the function Li_n(z)=sum_(k=1)^infty(z^k)/(k^n) (1) defined in the complex plane over the open unit ...
A positive integer n is kth powerfree if there is no number d such that d^k|n (d^k divides n), i.e., there are no kth powers or higher in the prime factorization of n. A ...
alpha(x) = 1/(sqrt(2pi))int_(-x)^xe^(-t^2/2)dt (1) = sqrt(2/pi)int_0^xe^(-t^2/2)dt (2) = 2Phi(x) (3) = erf(x/(sqrt(2))), (4) where Phi(x) is the normal distribution function ...
A proper factor of a positive integer n is a factor of n other than 1 or n (Derbyshire 2004, p. 32). For example, 2 and 3 are positive proper factors of 6, but 1 and 6 are ...
int_0^inftycos(2zt)sech(pit)dt=1/2sechz for |I[z]|<pi/2. A related integral is int_0^inftycosh(2zt)sech(pit)dt=1/2secz for |R[z]|<pi/2.
sum_(n=0)^(infty)(-1)^n[((2n-1)!!)/((2n)!!)]^3 = 1-(1/2)^3+((1·3)/(2·4))^3+... (1) = _3F_2(1/2,1/2,1/2; 1,1;-1) (2) = [_2F_1(1/4,1/4; 1;-1)]^2 (3) = ...
int_(-infty)^infty(J_(mu+xi)(x))/(x^(mu+xi))(J_(nu-xi)(y))/(y^(nu-xi))e^(itxi)dxi =[(2cos(1/2t))/(x^2e^(-it/2)+y^2e^(it/2))]^((mu+nu)/2) ...

...