TOPICS
Search

Search Results for ""


141 - 150 of 3276 for Special Unitary GroupSearch Results
A simple group is a group whose only normal subgroups are the trivial subgroup of order one and the improper subgroup consisting of the entire original group. Simple groups ...
An Abelian group is a group for which the elements commute (i.e., AB=BA for all elements A and B). Abelian groups therefore correspond to groups with symmetric multiplication ...
A point which does not lie on at least one ordinary line.
The Held group is the sporadic group He of order |He| = 4030387200 (1) = 2^(10)·3^3·5^2·7^3·17. (2) It is implemented in the Wolfram Language as HeldGroupHe[].
The Lyons group is the sporadic group Ly of order |Ly| = 51765179004000000 (1) = 2^8·3^7·5^6·7·11·31·37·67. (2) It is implemented in the Wolfram Language as LyonsGroupLy[].
The O'Nan group is the sporadic group O'N of order |O'N| = 460815505920 (1) = 2^9·3^4·5·7^3·11·19·31. (2) It is implemented in the Wolfram Language as ONanGroupON[].
The Rudvalis group is the sporadic group Ru of order |Ru| = 145926144000 (1) = 2^(14)·3^3·5^3·7·13·29. (2) It is implemented in the Wolfram Language as RudvalisGroupRu[].
The Suzuki group is the sporadic group Suz of order |Suz| = 448345497600 (1) = 2^(13)·3^7·5^2·7·11·13. (2) It is implemented in the Wolfram Language as SuzukiGroupSuz[].
The Thompson group is the sporadic group Th of order |Th| = 90745943887872000 (1) = 2^(15)·3^(10)·5^3·7^2·13·19·31. (2) It is implemented in the Wolfram Language as ...
A group generated by the elements P_i for i=1, ..., n subject to (P_iP_j)^(M_(ij))=1, where M_(ij) are the elements of a Coxeter matrix. Coxeter used the notation [3^(p,q,r)] ...
1 ... 12|13|14|15|16|17|18 ... 328 Previous Next

...