Search Results for ""
1381 - 1390 of 3276 for Special Unitary GroupSearch Results

The numbers defined by the recurrence relation K_(n+1)=1+min(2K_(|_n/2_|),3K_(|_n/3_|)), with K_0=1. The first few values for n=0, 1, 2, ... are 1, 3, 3, 4, 7, 7, 7, 9, 9, ...
Let alpha(x) be a step function with the jump j(x)=(N; x)p^xq^(N-x) (1) at x=0, 1, ..., N, where p>0,q>0, and p+q=1. Then the Krawtchouk polynomial is defined by ...
The (associated) Legendre function of the first kind P_n^m(z) is the solution to the Legendre differential equation which is regular at the origin. For m,n integers and z ...
By analogy with the log sine function, define the log cosine function by C_n=int_0^(pi/2)[ln(cosx)]^ndx. (1) The first few cases are given by C_1 = -1/2piln2 (2) C_2 = ...
The log sine function, also called the logsine function, is defined by S_n=int_0^pi[ln(sinx)]^ndx. (1) The first few cases are given by S_1 = -piln2 (2) S_2 = ...
The Lorentzian function is the singly peaked function given by L(x)=1/pi(1/2Gamma)/((x-x_0)^2+(1/2Gamma)^2), (1) where x_0 is the center and Gamma is a parameter specifying ...
The Lucas polynomials are the w-polynomials obtained by setting p(x)=x and q(x)=1 in the Lucas polynomial sequence. It is given explicitly by ...
(1) where H_n(x) is a Hermite polynomial (Watson 1933; Erdélyi 1938; Szegö 1975, p. 380). The generating function ...
Polynomials M_k(x) which form the associated Sheffer sequence for f(t)=(e^t-1)/(e^t+1) (1) and have the generating function sum_(k=0)^infty(M_k(x))/(k!)t^k=((1+t)/(1-t))^x. ...
The Morgan-Voyce polynomials are polynomials related to the Brahmagupta and Fibonacci polynomials. They are defined by the recurrence relations b_n(x) = ...

...