TOPICS
Search

Search Results for ""


261 - 270 of 3395 for Sinc FunctionSearch Results
The function lambda(n)=(-1)^(Omega(n)), (1) where Omega(n) is the number of not necessarily distinct prime factors of n, with Omega(1)=0. The values of lambda(n) for n=1, 2, ...
The log sine function, also called the logsine function, is defined by S_n=int_0^pi[ln(sinx)]^ndx. (1) The first few cases are given by S_1 = -piln2 (2) S_2 = ...
The entire function B(z) = [(sin(piz))/pi]^2[2/z+sum_(n=0)^(infty)1/((z-n)^2)-sum_(n=1)^(infty)1/((z+n)^2)] (1) = 1-(2sin^2(piz))/(pi^2z^2)[z^2psi_1(z)-z-1], (2) where ...
Given a function f(x), its inverse f^(-1)(x) is defined by f(f^(-1)(x))=f^(-1)(f(x))=x. (1) Therefore, f(x) and f^(-1)(x) are reflections about the line y=x. In the Wolfram ...
The unitary divisor function sigma_k^*(n) is the analog of the divisor function sigma_k(n) for unitary divisors and denotes the sum-of-kth-powers-of-the-unitary divisors ...
A triangle center function (sometimes simply called a center function) is a nonzero function f(a,b,c) that is homogeneous f(ta,tb,tc)=t^nf(a,b,c) (1) bisymmetry in b and c, ...
The "complete" gamma function Gamma(a) can be generalized to the incomplete gamma function Gamma(a,x) such that Gamma(a)=Gamma(a,0). This "upper" incomplete gamma function is ...
A special case of the Artin L-function for the polynomial x^2+1. It is given by L(s)=product_(p odd prime)1/(1-chi^-(p)p^(-s)), (1) where chi^-(p) = {1 for p=1 (mod 4); -1 ...
The prime zeta function P(s)=sum_(p)1/(p^s), (1) where the sum is taken over primes is a generalization of the Riemann zeta function zeta(s)=sum_(k=1)^infty1/(k^s), (2) where ...
The Smarandache function mu(n) is the function first considered by Lucas (1883), Neuberg (1887), and Kempner (1918) and subsequently rediscovered by Smarandache (1980) that ...
1 ... 24|25|26|27|28|29|30 ... 340 Previous Next

...