Search Results for ""
41 - 50 of 587 for Shape OperatorSearch Results
The operator partial^_ is defined on a complex manifold, and is called the 'del bar operator.' The exterior derivative d takes a function and yields a one-form. It decomposes ...
Let H be a Hilbert space and (e_i)_(i in I) is an orthonormal basis for H. The set S(H) of all operators T for which sum_(i in I)||Te_i||^2<infty is a self-adjoint ideal of ...
A *-algebra A of operators on a Hilbert space H is said to act nondegenerately if whenever Txi=0 for all T in A, it necessarily implies that xi=0. Algebras A which act ...
The operator of fractional integration is defined as _aD_t^(-nu)f(t)=1/(Gamma(nu))int_a^tf(u)(t-u)^(nu-1)du for nu>0 with _aD_t^0f(t)=f(t) (Oldham and Spanier 1974, Miller ...
Let H be a Hilbert space and (e_i)_(i in I) an orthonormal basis for H. The set of all products of two Hilbert-Schmidt operators is denoted N(H), and its elements are called ...
Given a Hilbert space H, the sigma-strong operator topology is the topology on the algebra L(H) of bounded operators from H to itself defined as follows: A sequence S_i of ...
Let M be a regular surface with v_(p),w_(p) points in the tangent space M_(p) of M. Then the third fundamental form is given by III(v_(p),w_(p))=S(v_(p))·S(w_(p)), where S is ...
A heptomino in the shape of the Greek character pi.
A point p on a regular surface M in R^3 is said to be parabolic if the Gaussian curvature K(p)=0 but S(p)!=0 (where S is the shape operator), or equivalently, exactly one of ...
A point p on a regular surface M in R^3 is said to be planar if the Gaussian curvature K(p)=0 and S(p)=0 (where S is the shape operator), or equivalently, both of the ...
...
View search results from all Wolfram sites (10097 matches)

