TOPICS
Search

Search Results for ""


471 - 480 of 2717 for Sequences and seriesSearch Results
For even h, (1) (Nagell 1951, p. 176). Writing out symbolically, sum_(n=0)^h((-1)^nproduct_(k=0)^(n-1)(1-x^(h-k)))/(product_(k=1)^(n)(1-x^k))=product_(k=0)^(h/2-1)1-x^(2k+1), ...
A generalization of the Euler L-function associated with a Grössencharakter.
The analytic summation of a hypergeometric series. Powerful general techniques of hypergeometric summation include Gosper's algorithm, Sister Celine's method, Wilf-Zeilberger ...
A^*(x)=sum_(lambda_n<=x)^'a_n=1/(2pii)int_(c-iinfty)^(c+iinfty)f(s)(e^(sx))/sds, where f(s)=suma_ne^(-lambda_ns).
The problem of forecasting future values X_(t+tau) (tau>0) of a weakly stationary process {X_t} from the known values X_s (s<=t).
There are a number of functions in mathematics denoted with upper or lower case Qs. 1. The nome q. 2. A prefix denoting q-analogs and q-series. 3. Q_n or q_n with n=0, 1, 2, ...
A q-analog of the beta function B(a,b) = int_0^1t^(a-1)(1-t)^(b-1)dt (1) = (Gamma(a)Gamma(b))/(Gamma(a+b)), (2) where Gamma(z) is a gamma function, is given by B_q(a,b) = ...
The function defined by [n]_q = [n; 1]_q (1) = (1-q^n)/(1-q) (2) for integer n, where [n; k]_q is a q-binomial coefficient. The q-bracket satisfies lim_(q->1^-)[n]_q=n. (3)
_2phi_1(a,q^(-n);c;q,q)=(a^n(c/a,q)_n)/((a;q)_n), where _2phi_1(a,b;c;q,z) is a q-hypergeometric function.
Kontsevich's integral is a far-reaching generalization of the Gauss integral for the linking number, and provides a tool to construct the universal Vassiliev invariant of a ...
1 ... 45|46|47|48|49|50|51 ... 272 Previous Next

...