Search Results for ""
351 - 360 of 2717 for Sequences and seriesSearch Results
The divisor function sigma_k(n) for n an integer is defined as the sum of the kth powers of the (positive integer) divisors of n, sigma_k(n)=sum_(d|n)d^k. (1) It is ...
The factorial n! is defined for a positive integer n as n!=n(n-1)...2·1. (1) So, for example, 4!=4·3·2·1=24. An older notation for the factorial was written (Mellin 1909; ...
Apéry's constant is defined by zeta(3)=1.2020569..., (1) (OEIS A002117) where zeta(z) is the Riemann zeta function. B. Haible and T. Papanikolaou computed zeta(3) to 1000000 ...
A digit sum s_b(n) is a sum of the base-b digits of n, which can be implemented in the Wolfram Language as DigitSum[n_, b_:10] := Total[IntegerDigits[n, b]]The following ...
The distinct prime factors of a positive integer n>=2 are defined as the omega(n) numbers p_1, ..., p_(omega(n)) in the prime factorization ...
Let K be a number field with r_1 real embeddings and 2r_2 imaginary embeddings and let r=r_1+r_2-1. Then the multiplicative group of units U_K of K has the form ...
The nth subfactorial (also called the derangement number; Goulden and Jackson 1983, p. 48; Graham et al. 2003, p. 1050) is the number of permutations of n objects in which no ...
Given a series of positive terms u_i and a sequence of finite positive constants a_i, let rho=lim_(n->infty)(a_n(u_n)/(u_(n+1))-a_(n+1)). 1. If rho>0, the series converges. ...
Given a Taylor series f(x)=f(x_0)+(x-x_0)f^'(x_0)+((x-x_0)^2)/(2!)f^('')(x_0)+... +((x-x_0)^n)/(n!)f^((n))(x_0)+R_n, (1) the error R_n after n terms is given by ...
A Tauberian theorem is a theorem that deduces the convergence of an series on the basis of the properties of the function it defines and any kind of auxiliary hypothesis ...
...
View search results from all Wolfram sites (53484 matches)

