Search Results for ""
281 - 290 of 2717 for Sequences and seriesSearch Results

Let phi(t)=sum_(n=0)^(infty)A_nt^n be any function for which the integral I(x)=int_0^inftye^(-tx)t^pphi(t)dt converges. Then the expansion where Gamma(z) is the gamma ...
If lim_(k->infty)u_k!=0, then the series {u_n} diverges.
Also known as the alternating series test. Given a series sum_(n=1)^infty(-1)^(n+1)a_n with a_n>0, if a_n is monotonic decreasing as n->infty and lim_(n->infty)a_n=0, then ...
A series sum_(n)u_n is said to converge absolutely if the series sum_(n)|u_n| converges, where |u_n| denotes the absolute value. If a series is absolutely convergent, then ...
Let suma_k and sumb_k be a series with positive terms and suppose a_1<=b_1, a_2<=b_2, .... 1. If the bigger series converges, then the smaller series also converges. 2. If ...
A test for the convergence of Fourier series. Let phi_x(t)=f(x+t)+f(x-t)-2f(x), then if int_0^pi(|phi_x(t)|dt)/t is finite, the Fourier series converges to f(x) at x.
A linear approximation to a function f(x) at a point x_0 can be computed by taking the first term in the Taylor series f(x_0+Deltax)=f(x_0)+f^'(x_0)Deltax+....
The inverse tangent is the multivalued function tan^(-1)z (Zwillinger 1995, p. 465), also denoted arctanz (Abramowitz and Stegun 1972, p. 79; Harris and Stocker 1998, p. 311; ...
The power tower of order k is defined as a^^k=a^(a^(·^(·^(·^a))))_()_(k), (1) where ^ is Knuth up-arrow notation (Knuth 1976), which in turn is defined by ...
The hyperbolic cosine is defined as coshz=1/2(e^z+e^(-z)). (1) The notation chx is sometimes also used (Gradshteyn and Ryzhik 2000, p. xxix). This function describes the ...

...