TOPICS
Search

Search Results for ""


2201 - 2210 of 2717 for Sequences and seriesSearch Results
Let U(P,Q) and V(P,Q) be Lucas sequences generated by P and Q, and define D=P^2-4Q. (1) Let n be an odd composite number with (n,D)=1, and n-(D/n)=2^sd with d odd and s>=0, ...
A strongly binary tree is a rooted tree for which the root is adjacent to either zero or two vertices, and all non-root vertices are adjacent to either one or three vertices ...
A strongly connected digraph is a directed graph in which it is possible to reach any node starting from any other node by traversing edges in the direction(s) in which they ...
An integer n is called a super unitary perfect number if sigma^*(sigma^*(n))=2n, where sigma^*(n) is the unitary divisor function. The first few are 2, 9, 165, 238, 1640, ... ...
A superabundant number is a composite number n such that sigma(n)/n>sigma(k)/k for all k<n, where sigma(n) is the divisor function. Superabundant numbers are closely related ...
The superfactorial of n is defined by Pickover (1995) as n$=n!^(n!^(·^(·^(·^(n!)))))_()_(n!). (1) The first two values are 1 and 4, but subsequently grow so rapidly that 3$ ...
A graph that can be reduced to another graph with the same degree sequence by edge-switching is known as a switchable graph. Conversely, a graph that cannot be reduced to ...
Prellberg (2001) noted that the limit c=lim_(n->infty)(T_n)/(B_nexp{1/2[W(n)]^2})=2.2394331040... (OEIS A143307) exists, where T_n is a Takeuchi number, B_n is a Bell number, ...
Let T(x,y,z) be the number of times "otherwise" is called in the TAK function, then the Takeuchi numbers are defined by T_n(n,0,n+1). A recursive formula for T_n is given by ...
The tetranacci constant is ratio to which adjacent tetranacci numbers tend, and is given by T = (x^4-x^3-x^2-x-1)_2 (1) = 1.92756... (2) (OEIS A086088), where (P(x))_n ...
1 ... 218|219|220|221|222|223|224 ... 272 Previous Next

...