Search Results for ""
1471 - 1480 of 2717 for Sequences and seriesSearch Results
The Eulerian number <n; k> gives the number of permutations of {1,2,...,n} having k permutation ascents (Graham et al. 1994, p. 267). Note that a slightly different ...
Experimental mathematics is a type of mathematical investigation in which computation is used to investigate mathematical structures and identify their fundamental properties ...
An exponential generating function for the integer sequence a_0, a_1, ... is a function E(x) such that E(x) = sum_(k=0)^(infty)a_k(x^k)/(k!) (1) = ...
A Fibonacci prime is a Fibonacci number F_n that is also a prime number. Every F_n that is prime must have a prime index n, with the exception of F_4=3. However, the converse ...
An n-step Fibonacci sequence {F_k^((n))}_(k=1)^infty is defined by letting F_k^((n))=0 for k<=0, F_1^((n))=F_2^((n))=1, and other terms according to the linear recurrence ...
Define G(a,n)=1/aint_0^infty[1-e^(aEi(-t))sum_(k=0)^(n-1)((-a)^k[Ei(-t)]^k)/(k!)]. Then the Flajolet-Odlyzko constant is defined as G(1/2,1)=0.757823011268... (OEIS A143297).
Let t be an infinite word over a finite alphabet Sigma. Then there exists a uniformly recurrent infinite word r such that Sub(r) subset= Sub(t), where Sub(w) is the set of ...
Gieseking's constant is defined by G = int_0^(2pi/3)ln(2cos(1/2x))dx (1) = Cl_2(1/3pi) (2) = (3sqrt(3))/4[1-sum_(k=0)^(infty)1/((3k+2)^2)+sum_(k=1)^(infty)1/((3k+1)^2)] (3) = ...
The Goh-Schmutz constant is defined by the integrals C = int_0^infty(ln(1+t))/(e^t-1)dt (1) = int_0^inftyln[1-ln(1-e^(-t))]dt (2) = ...
The golden ratio conjugate, also called the silver ratio, is the quantity Phi = 1/phi (1) = phi-1 (2) = 2/(1+sqrt(5)) (3) = (sqrt(5)-1)/2 (4) = 0.6180339887... (5) (OEIS ...
...