Let be an infinite word over a finite alphabet . Then there exists a uniformly recurrent infinite word such that , where is the set of all finite subwords of .
Furstenberg's Theorem
Explore with Wolfram|Alpha
References
Allouche, J.-P. and Shallit, J. Automatic Sequences: Theory, Applications, Generalizations. Cambridge, England: Cambridge University Press, p. 337, 2003.Referenced on Wolfram|Alpha
Furstenberg's TheoremCite this as:
Weisstein, Eric W. "Furstenberg's Theorem." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/FurstenbergsTheorem.html