TOPICS
Search

Search Results for ""


1321 - 1330 of 2717 for Sequences and seriesSearch Results
A root-finding algorithm which makes use of a third-order Taylor series f(x)=f(x_n)+f^'(x_n)(x-x_n)+1/2f^('')(x_n)(x-x_n)^2+.... (1) A root of f(x) satisfies f(x)=0, so 0 ...
A root-finding algorithm also known as the tangent hyperbolas method or Halley's rational formula. As in Halley's irrational formula, take the second-order Taylor series ...
An apodization function chosen to minimize the height of the highest sidelobe (Hamming and Tukey 1949, Blackman and Tukey 1959). The Hamming function is given by ...
Let {a_n} be a nonnegative sequence and f(x) a nonnegative integrable function. Define A_n=sum_(k=1)^na_k (1) and F(x)=int_0^xf(t)dt (2) and take p>1. For sums, ...
It is always possible to write a sum of sinusoidal functions f(theta)=acostheta+bsintheta (1) as a single sinusoid the form f(theta)=ccos(theta+delta). (2) This can be done ...
For all integers n and nonnegative integers t, the harmonic logarithms lambda_n^((t))(x) of order t and degree n are defined as the unique functions satisfying 1. ...
The haversine, also called the haversed sine, is a little-used entire trigonometric function defined by hav(z) = 1/2vers(z) (1) = 1/2(1-cosz) (2) = sin^2(1/2z), (3) where ...
In conical coordinates, Laplace's equation can be written ...
As shown by Morse and Feshbach (1953) and Arfken (1970), the Helmholtz differential equation is separable in oblate spheroidal coordinates.
As shown by Morse and Feshbach (1953) and Arfken (1970), the Helmholtz differential equation is separable in prolate spheroidal coordinates.
1 ... 130|131|132|133|134|135|136 ... 272 Previous Next

...