TOPICS
Search

Search Results for ""


2401 - 2410 of 3891 for Second Order Ordinary Differential Equat...Search Results
For d>=1, Omega an open subset of R^d, p in [1;+infty] and s in N, the Sobolev space W^(s,p)(R^d) is defined by W^(s,p)(Omega)={f in L^p(Omega): forall ...
A four-vector a_mu is said to be spacelike if its four-vector norm satisfies a_mua^mu>0. One should note that the four-vector norm is nothing more than a special case of the ...
The spherical distance between two points P and Q on a sphere is the distance of the shortest path along the surface of the sphere (paths that cut through the interior of the ...
The Lie derivative of a spinor psi is defined by L_Xpsi(x)=lim_(t->0)(psi^~_t(x)-psi(x))/t, where psi^~_t is the image of psi by a one-parameter group of isometries with X ...
A strong pseudo-Riemannian metric on a smooth manifold M is a (0,2) tensor field g which is symmetric and for which, at each m in M, the map v_m|->g_m(v_m,·) is an ...
A strong Riemannian metric on a smooth manifold M is a (0,2) tensor field g which is both a strong pseudo-Riemannian metric and positive definite. In a very precise way, the ...
Any square matrix A can be written as a sum A=A_S+A_A, (1) where A_S=1/2(A+A^(T)) (2) is a symmetric matrix known as the symmetric part of A and A_A=1/2(A-A^(T)) (3) is an ...
The taxicab metric, also called the Manhattan distance, is the metric of the Euclidean plane defined by g((x_1,y_1),(x_2,y_2))=|x_1-x_2|+|y_1-y_2|, for all points ...
A four-vector a_mu is said to be timelike if its four-vector norm satisfies a_mua^mu<0. One should note that the four-vector norm is nothing more than a special case of the ...
Let Omega be a bounded open set in R^d whose boundary partialOmega is at least C^1 smooth and let T:C_c^1(Omega^_)->L^p(partialOmega) (1) be a linear operator defined by ...
1 ... 238|239|240|241|242|243|244 ... 390 Previous Next

...