TOPICS
Search

Search Results for ""


231 - 240 of 3891 for Second Order Ordinary Differential Equat...Search Results
An ordinary double point of a plane curve is point where a curve intersects itself such that two branches of the curve have distinct tangent lines. Ordinary double points of ...
Polynomials b_n(x) which form a Sheffer sequence with g(t) = t/(e^t-1) (1) f(t) = e^t-1, (2) giving generating function sum_(k=0)^infty(b_k(x))/(k!)t^k=(t(t+1)^x)/(ln(1+t)). ...
A (k,l)-multigrade equation is a Diophantine equation of the form sum_(i=1)^ln_i^j=sum_(i=1)^lm_i^j (1) for j=1, ..., k, where m and n are l-vectors. Multigrade identities ...
A linear equation is an algebraic equation of the form y=mx+b involving only a constant and a first-order (linear) term, where m is the slope and b is the y-intercept. The ...
The van der Pol equation is an ordinary differential equation that can be derived from the Rayleigh differential equation by differentiating and setting y=y^'. It is an ...
A number defined by b_n=b_n(0), where b_n(x) is a Bernoulli polynomial of the second kind (Roman 1984, p. 294), also called Cauchy numbers of the first kind. The first few ...
A quadratic recurrence is a recurrence equation on a sequence of numbers {x_n} expressing x_n as a second-degree polynomial in x_k with k<n. For example, x_n=x_(n-1)x_(n-2) ...
Suppose f(x) is a function of x that is twice differentiable at a stationary point x_0. 1. If f^('')(x_0)>0, then f has a local minimum at x_0. 2. If f^('')(x_0)<0, then f ...
If a real algebraic curve has no singularities except nodes and cusps, bitangents, and inflection points, then n+2tau_2^'+iota^'=m+2delta_2^'+kappa^', where n is the order, ...
Let O be an order of an imaginary quadratic field. The class equation of O is the equation H_O=0, where H_O is the extension field minimal polynomial of j(O) over Q, with ...
1 ... 21|22|23|24|25|26|27 ... 390 Previous Next

...