Search Results for ""
6501 - 6510 of 13135 for STATISTICSSearch Results
C_6 is one of the two groups of group order 6 which, unlike D_3, is Abelian. It is also a cyclic. It is isomorphic to C_2×C_3. Examples include the point groups C_6 and S_6, ...
C_7 is the cyclic group that is the unique group of group order 7. Examples include the point group C_7 and the integers modulo 7 under addition (Z_7). No modulo ...
The cyclic group C_8 is one of the three Abelian groups of the five groups total of group order 8. Examples include the integers modulo 8 under addition (Z_8) and the residue ...
The cyclic group C_9 is one of the two Abelian groups of group order 9 (the other order-9 Abelian group being C_3×C_3; there are no non-Abelian groups of order 9). An example ...
A hexagon (not necessarily regular) on whose polygon vertices a circle may be circumscribed. Let sigma_i=Pi_i(a_1^2,a_2^2,a_3^2,a_4^2,a_5^2,a_6^2) (1) denote the ith-order ...
A bounded linear operator T in B(H) on a Hilbert space H is said to be cyclic if there exists some vector v in H for which the set of orbits ...
A cyclic pentagon is a not necessarily regular pentagon on whose polygon vertices a circle may be circumscribed. Let such a pentagon have edge lengths a_1, ..., a_5, and area ...
A cyclic polygon is a polygon with vertices upon which a circle can be circumscribed. Since every triangle has a circumcircle, every triangle is cyclic. It is conjectured ...
Let A_1, A_2, A_3, and A_4 be four points on a circle, and H_1, H_2, H_3, H_4 the orthocenters of triangles DeltaA_2A_3A_4, etc. If, from the eight points, four with ...
A sophisticated checksum (often abbreviated CRC), which is based on the algebra of polynomials over the integers (mod 2). It is substantially more reliable in detecting ...
...
View search results from all Wolfram sites (192556 matches)

