TOPICS
Search

Search Results for ""


601 - 610 of 13134 for SPECIAL TOPICSSearch Results
Polynomials O_n(x) that can be defined by the sum O_n(x)=1/4sum_(k=0)^(|_n/2_|)(n(n-k-1)!)/(k!)(1/2x)^(2k-n-1) (1) for n>=1, where |_x_| is the floor function. They obey the ...
The wave equation in oblate spheroidal coordinates is del ^2Phi+k^2Phi=partial/(partialxi_1)[(xi_1^2+1)(partialPhi)/(partialxi_1)] ...
The omega constant is defined as W(1)=0.5671432904... (1) (OEIS A030178), where W(x) is the Lambert W-function. It is available in the Wolfram Language using the function ...
The prescription that a trigonometry identity can be converted to an analogous identity for hyperbolic functions by expanding, exchanging trigonometric functions with their ...
A fraction containing each of the digits 1 through 9 is called a pandigital fraction. The following table gives the number of pandigital fractions which represent simple unit ...
Given an integer e>=2, the Payam number E_+/-(e) is the smallest positive odd integer k such that for every positive integer n, the number k·2^n+/-1 is not divisible by any ...
The Pell polynomials P(x) are the W-polynomials generated by the Lucas polynomial sequence using the generator p(x)=2x, q(x)=1. This gives recursive equations for P(x) from ...
Polynomials s_k(x;lambda,mu) which are a generalization of the Boole polynomials, form the Sheffer sequence for g(t) = (1+e^(lambdat))^mu (1) f(t) = e^t-1 (2) and have ...
Polynomials P_k(x) which form the Sheffer sequence for g(t) = (2t)/(e^t-1) (1) f(t) = (e^t-1)/(e^t+1) (2) and have generating function ...
The Poisson-Charlier polynomials c_k(x;a) form a Sheffer sequence with g(t) = e^(a(e^t-1)) (1) f(t) = a(e^t-1), (2) giving the generating function ...
1 ... 58|59|60|61|62|63|64 ... 1314 Previous Next

...