Search Results for ""
931 - 940 of 3930 for Regularized Beta FunctionSearch Results

A Taylor series is a series expansion of a function about a point. A one-dimensional Taylor series is an expansion of a real function f(x) about a point x=a is given by (1) ...
Every nonconstant entire function attains every complex value with at most one exception (Henrici 1988, p. 216; Apostol 1997). Furthermore, every analytic function assumes ...
Krall and Fink (1949) defined the Bessel polynomials as the function y_n(x) = sum_(k=0)^(n)((n+k)!)/((n-k)!k!)(x/2)^k (1) = sqrt(2/(pix))e^(1/x)K_(-n-1/2)(1/x), (2) where ...
The sawtooth wave, called the "castle rim function" by Trott (2004, p. 228), is the periodic function given by S(x)=Afrac(x/T+phi), (1) where frac(x) is the fractional part ...
The Gram series is an approximation to the prime counting function given by G(x)=1+sum_(k=1)^infty((lnx)^k)/(kk!zeta(k+1)), (1) where zeta(z) is the Riemann zeta function ...
The G-transform of a function f(x) is defined by the integral (Gf)(x)=(G_(pq)^(mn)|(a_p); (b_q)|f(t))(x) (1) =1/(2pii)int_sigmaGamma[(b_m)+s, 1-(a_n)-s; (a_p^(n+1))+s, ...
In the theory of special functions, a class of functions is said to be "of the third kind" if it is similar to but distinct from previously defined functions already defined ...
Erfc is the complementary error function, commonly denoted erfc(z), is an entire function defined by erfc(z) = 1-erf(z) (1) = 2/(sqrt(pi))int_z^inftye^(-t^2)dt. (2) It is ...
Let z=x+iy and f(z)=u(x,y)+iv(x,y) on some region G containing the point z_0. If f(z) satisfies the Cauchy-Riemann equations and has continuous first partial derivatives in ...
A modification of Legendre's formula for the prime counting function pi(x). It starts with |_x_| = (1) where |_x_| is the floor function, P_2(x,a) is the number of integers ...

...