Search Results for ""
2551 - 2560 of 3930 for Regularized Beta FunctionSearch Results
The characteristic function f(n)={1 n is prime; 0 n otherwise (1) of primes has values 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, ... (OEIS A010051) for n=1, 2, ...
Vardi's integral is the beautiful definite integral int_(pi/4)^(pi/2)lnlntanxdx = pi/2ln[sqrt(2pi)(Gamma(3/4))/(Gamma(1/4))] (1) = pi/4ln[(4pi^3)/(Gamma^4(1/4))] (2) = ...
Apéry's constant is defined by zeta(3)=1.2020569..., (1) (OEIS A002117) where zeta(z) is the Riemann zeta function. B. Haible and T. Papanikolaou computed zeta(3) to 1000000 ...
A number n is k-multiperfect (also called a k-multiply perfect number or k-pluperfect number) if sigma(n)=kn for some integer k>2, where sigma(n) is the divisor function. The ...
A figurate number of the form P_n^((4))=1/6n(n+1)(2n+1), (1) corresponding to a configuration of points which form a square pyramid, is called a square pyramidal number (or ...
The stability index Z^_(G) of a graph G is defined by Z^_=sum_(k=0)^(|_n/2_|)|c_(2k)|, where c_k is the kth coefficient of the characteristic polynomial and |_n_| denotes the ...
The Wigner 3j-symbols (j_1 j_2 j_3; m_1 m_2 m_3), also known as "3j symbols" (Messiah 1962, p. 1056) or Wigner coefficients (Shore and Menzel 1968, p. 275) are quantities ...
The Wigner 6j-symbols (Messiah 1962, p. 1062), commonly simply called the 6j-symbols, are a generalization of Clebsch-Gordan coefficients and Wigner 3j-symbol that arise in ...
Zarankiewicz's conjecture asserts that graph crossing number for a complete bipartite graph K_(m,n) is Z(m,n)=|_n/2_||_(n-1)/2_||_m/2_||_(m-1)/2_|, (1) where |_x_| is the ...
A series which is not convergent. Series may diverge by marching off to infinity or by oscillating. Divergent series have some curious properties. For example, rearranging ...
...
View search results from all Wolfram sites (419559 matches)

