Search Results for ""
551 - 560 of 4515 for Real and/or Rational numbersSearch Results
A square with side lengths 1. The unit square usually means the one with coordinates (0, 0), (1, 0), (1, 1), (0, 1) in the real plane, or 0, 1, 1+i, and i in the complex ...
If f is a continuous real-valued function on [a,b] and if any epsilon>0 is given, then there exists a polynomial p on [a,b] such that |f(x)-P(x)|<epsilon for all x in [a,b]. ...
Constants gamma such that [int_Omega|f|^qdx]^(1/q)<=gamma[int_Omegasum_(i=1)^N|(partialf)/(partialx_i)|^pdx]^(1/p), where f is a real-valued smooth function on a region Omega ...
Let f(x) be a real continuous monotonic strictly increasing function on the interval [0,a] with f(0)=0 and b<=f(a), then ab<=int_0^af(x)dx+int_0^bf^(-1)(y)dy, where f^(-1)(y) ...
A symmetric bilinear form on a vector space V is a bilinear function Q:V×V->R (1) which satisfies Q(v,w)=Q(w,v). For example, if A is a n×n symmetric matrix, then ...
The qubit |psi>=a|0>+b|1> can be represented as a point (theta,phi) on a unit sphere called the Bloch sphere. Define the angles theta and phi by letting a=cos(theta/2) and ...
The elliptic logarithm is generalization of integrals of the form int_infty^x(dt)/(sqrt(t^2+at)), for a real, which can be expressed in terms of logarithmic and inverse ...
Let Q(x) be a real or complex piecewise-continuous function defined for all values of the real variable x and that is periodic with minimum period pi so that Q(x+pi)=Q(x). ...
The jinc function is defined as jinc(x)=(J_1(x))/x, (1) where J_1(x) is a Bessel function of the first kind, and satisfies lim_(x->0)jinc(x)=1/2. The derivative of the jinc ...
If mu is a real measure (i.e., a measure that takes on real values), then one can decompose it according to where it is positive and negative. The positive variation is ...
...
View search results from all Wolfram sites (478819 matches)

