TOPICS
Search

Search Results for ""


2921 - 2930 of 4515 for Real and/or Rational numbersSearch Results
The Markov numbers m are the union of the solutions (x,y,z) to the Markov equation x^2+y^2+z^2=3xyz, (1) and are related to Lagrange numbers L_n by L_n=sqrt(9-4/(m^2)). (2) ...
product_(k=1)^(infty)(1-x^k) = sum_(k=-infty)^(infty)(-1)^kx^(k(3k+1)/2) (1) = 1+sum_(k=1)^(infty)(-1)^k[x^(k(3k-1)/2)+x^(k(3k+1)/2)] (2) = (x)_infty (3) = ...
An integer whose decimal digits contain no zeros is said to be zerofree. The first few positive zerofree integers are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, ...
The Cramér conjecture is the unproven conjecture that lim sup_(n->infty)(p_(n+1)-p_n)/((lnp_n)^2)=1, where p_n is the nth prime.
The first few numbers whose abundance absolute values are odd squares (excluding the trivial cases of powers of 2) are 98, 2116, 4232, 49928, 80656, 140450, 550564, 729632, ...
An n-step Lucas sequence {L_k^((n))}_(k=1)^infty is defined by letting L_k^((n))=-1 for k<0, L_0^((n))=n, and other terms according to the linear recurrence equation ...
The sequence of numbers which are sums of distinct powers of 4. The first few are 0, 1, 4, 5, 16, 17, 20, 21, 64, 65, 68, 69, 80, 81, 84, ... (OEIS A000695). These numbers ...
An integer N which is a product of distinct primes and which satisfies 1/N+sum_(p|N)1/p=1 (Butske et al. 1999). The first few are 2, 6, 42, 1806, 47058, ... (OEIS A054377). ...
A partial solution to the Erdős squarefree conjecture which states that the binomial coefficient (2n; n) is never squarefree for all sufficiently large n>=n_0. Sárkőzy (1985) ...
Let (x_1,x_2) and (y_1,y_2,y_3) be two sets of complex numbers linearly independent over the rationals. Then at least one of ...
1 ... 290|291|292|293|294|295|296 ... 452 Previous Next

...